DOI QR코드

DOI QR Code

A Study on Image Restoration for Removing Mixed Noise while Considering Edge Information

에지정보를 고려한 복합잡음 제거를 위한 영상복원에 관한 연구

  • ;
  • 김남호 (부경대학교 제어계측공학과)
  • Received : 2011.06.20
  • Accepted : 2011.08.30
  • Published : 2011.10.31

Abstract

In image signal processing, image signal is corrupted by various noises and caused the degradation phenomenon. And Images often corrupted by AWGN(additive white gaussian noise) and impulse noise which called mixed noise. In this paper, the algorithm is proposed to remove mixed noise while keeping edge information. The proposed algorithm first classifies the noise type, if the classify result is AWGN, then the mean of the output after using self-adaptive weighted mean filter and median value will be the outfiltering value. And if the noise type is impulse noise, then the noise is removed by a modified nonlinear filter. Also we compare existing methods through the simulation and using PSNR(peak signal to noise ratio) as the standard of judgement of improvement effect. The result of computer simulation on test images indicates that the proposed method is superior to traditional filtering algorithms.

영상신호를 처리하는 과정에서 잡음에 의해 영상의 열화가 발생하고 있으며, 가우시안 잡음과 임펄스 잡음이 중첩되어 생성된 복합잡음에 의해 훼손되는 경우가 많다. 따라서 본 논문에서는 에지정보를 고려하며 임펄스 잡음과 AWGN(additive white gaussian noise) 잡음이 중첩된 복합잡음을 제거하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 잡음의 종류를 판단과정을 거친 후, 그 결과가 AWGN이라고 하면 self-adaptive weighted mean 필터를 사용하여 구하여진 값과 마스크 내의 중간값 사이의 평균을 출력으로 한다. 만약 임펄스 잡음이라고 판단 될 경우, 변형된 비선형 필터를 이용하여 처리한다. 그리고 시뮬레이션을 통해 기존의 방법들과 그 성능을 비교하였고 판단 기준으로 PSNR(peak signal to noise ratio)을 사용하였다. 테스트 영상들에 대한 시뮬레이션 결과로부터 제안한 방법은 기존의 방법들보다 잡음제거나 에지보존 등 방면에서 우수한 성능을 나타내었다.

Keywords

References

  1. R. C. Gonzalez and R. E. Woods, Eds., Digital Image Processing, Prentice Hall, 2007.
  2. K. N. Plataniotis and A. N. Venetsanopoulos, Eds., Color Image Processiang and Applications, Springer, Berlin, Germany, 2000.
  3. You Ying-rong and Fan Ying-le, "Adaptive filtering based on neighborhood information", Journal of Hangzhou Dianzi University, vol. 25. No.3, pp. 82-85,Jun, 2005.
  4. Wang Xue-zhong and Xiao Bin, "An adaptive filter based on images entropy", Computer Applications, vol.28, No. 10, pp.2643-2644, October 2008.
  5. Jie Xiang Yang and Hong Ren Wu, "Mixed Gaussian and uniform impulse noise analysis using robust estimation for digital images", Digital Siganal Processing, 16th International Conference on, pp. 1-5, 2009.
  6. Z. Wang and D. Zhang, "Progressive switchingmedian filter for the removal of impulsenoise", IEEE Transactionson Circuitsand Systems, vol. 46(1),pp. 78-80, 1999.
  7. Ezeuiel lopez-Rubio, "Restoration of images corrupted by Gaussian and Uniform impulsive noise", Pattern Recognition, vol.43, pp. 1835-1846, 2010. https://doi.org/10.1016/j.patcog.2009.11.017
  8. Chang, S, G, Bin Yu and Vetterli, M, "Adaptive wavelet thresholding for image denoising and comparession" IEEE Image Processing, pp. 1532-1546, 2000.
  9. Chang Rui-na, Mu Xiao-min, Yang Shou-yi and Qi Lin, "Adaptive weighted average filtering algorithm based on medium value", Computer Engineering and Design, vol.29, No. 16, pp. 4257-4259, 2008.
  10. Liu Ying-hui, Gao Kun and Ni Guo-qiang, "An Improved Trilateral filter for Gaussian and Impulse Noise Removal", IEEE 2nd International Conference on Industrial Mechatronics and Automation. pp. 385-388. 2010.
  11. S. Deivalakshmi and P. Palanisamy, "Improved tolerance based Selective Arithmetic Mean Filer for Detection and Removal of Impulse Noise", IEEE Industrial and Information Systems., Jul 29-Aug 01. 5th International Conference, ICIIS 2010.
  12. Jiahui Wang and Jingxing Hong, "A New self-Adaptice Weighted Filter for removing Noise in Infrared", IEEE Information Engineering and Computer Science, ICIECS 2009, International Conference, pp. 1-4, Dec. 2009.

Cited by

  1. A Study on Image Restoration Filter in Impulse Noise Environments vol.18, pp.2, 2014, https://doi.org/10.6109/jkiice.2014.18.2.475
  2. A Study on Image Restoration Filter in AWGN Environments vol.18, pp.4, 2014, https://doi.org/10.6109/jkiice.2014.18.4.949
  3. 복합잡음 환경에서 영상복원 필터에 관한 연구 vol.18, pp.8, 2011, https://doi.org/10.6109/jkiice.2014.18.8.2001
  4. 복합잡음 환경에서 비선형 필터 알고리즘을 이용한 잡음제거 방법 vol.18, pp.9, 2011, https://doi.org/10.6109/jkiice.2014.18.9.2265