SOME NOTES ON EXTENSIONS OF BASIC UNIVALENCE CRITERIA

Erhan Deniz and Halit Orhan

Abstract

The object of the present paper is to obtain a more general condition for univalence of analytic functions in the open unit disk U. The significant relationships and relevance with other results are also given. A number of known univalent conditions would follow upon specializing the parameters involved in our main results.

1. Introduction

We denote by U_{r} the disk $\{z \in \mathbb{C}:|z|<r\}$, where $0<r \leq 1$, by $U=U_{1}$ the open unit disk of the complex plane and by I the interval $[0, \infty)$.

Let A denote the class of analytic functions in the open unit disk U which satisfy the usual normalization condition:

$$
f(0)=f^{\prime}(0)-1=0 .
$$

Three of the most important and known univalence criteria for analytic functions defined in the open unit disk were obtained by Nehari [4], OzakiNunokawa [7] and Becker [1]. Some extensions of these three criteria were given by (see $[6,9,10,11,12,13]$ and $[14])$. During the time, unlike there were obtained a lot of univalence criteria (see also [2], [3] and [5]).

Our univalence conditions contain as special cases, Tudor's results and other results obtained by some of the authors cited in references.
Theorem 1.1 (see [1]). Let $f \in A$. If for all $z \in U$

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \tag{1.1}
\end{equation*}
$$

then the function f is univalent in U.
Theorem 1.2 (see [7]). Let $f \in A$. If for all $z \in U$

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1, \tag{1.2}
\end{equation*}
$$

Received June 28, 2009.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. analytic functions, univalent function, univalence condition, Loewner chain.
then the function f is univalent in U.
Theorem 1.3 (see [4]). Let $f \in A$. If for all $z \in U$

$$
\begin{equation*}
|\{f, z\}| \leq \frac{2}{\left(1-|z|^{2}\right)^{2}} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\{f ; z\}=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2} \tag{1.4}
\end{equation*}
$$

Then the function f is univalent in U.
In the present paper we consider the analyticity and univalence of functions $f(z)$ belonging to the class A. Our considerations are based on the theory of Loewner chains. A function $L: U \times I \rightarrow \mathbb{C}$ is called a Loewner chain if it is analytic and univalent in U and $L(z, s)$ is subordinate to $L(z, t)$ for all $0 \leq s \leq t<\infty$. Consider f and g analytic functions in U. We say that f is subordinate to g, written $f \prec g$, if there exists a function w analytic in U which satisfies $w(0)=0,|w(z)|<1$ and $f(z)=g(w(z))$ for all $z \in U$.

2. Preliminaries

In proving our results, we will need the following theorem due to Ch. Pommerenke [8].

Theorem 2.1. Let $L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\cdots, a_{1}(t) \neq 0$ be analytic in U_{r} for all $t \in I$, locally absolutely continuous in I, and locally uniform with respect to U_{r}. For almost all $t \in I$, suppose that

$$
z \frac{\partial L(z, t)}{\partial z}=p(z, t) \frac{\partial L(z, t)}{\partial t}, \forall z \in U_{r},
$$

where $p(z, t)$ is analytic in U and satisfies the condition $\Re(p(z, t))>0$ for all $z \in U, t \in I$. If $\left|a_{1}(t)\right| \rightarrow \infty$ for $t \rightarrow \infty$ and $\left\{L(z, t) / a_{1}(t)\right\}$ forms a normal family in U_{r}, then for each $t \in I$, the function $L(z, t)$ has an analytic and univalent extension to the whole disk U.

3. Main results

Making use of Theorem 2.1 we can prove now, our main results.
Theorem 3.1. Let m be a positive real number and let α be a complex number such that $\Re(\alpha)>\frac{1}{m+1}$ and $f \in A$. Let g and h be two analytic functions in U, $g(z)=1+b_{1} z+\cdots, h(z)=c_{0}+c_{1} z+\cdots$. If the following inequalities

$$
\begin{equation*}
\left|\left(\frac{1}{\alpha} \frac{f^{\prime}(z)}{g(z)}-1\right)-\frac{m-1}{2}\right|<\frac{m+1}{2} \tag{3.1}
\end{equation*}
$$

and
(3.2)

$$
\begin{aligned}
& \left.\left|\left(\frac{1}{\alpha} \frac{f^{\prime}(z)}{g(z)}-1\right)\right| z\right|^{2(m+1)} \\
& +z^{2}\left(1-|z|^{m+1}\right)^{2}\left[\left(\frac{1-\alpha}{\alpha}\right) \frac{f^{\prime}(z) h(z)}{f(z)}+\frac{1}{\alpha} \frac{f^{\prime}(z) h^{2}(z)}{g(z)}+\frac{g^{\prime}(z) h(z)}{g(z)}-h^{\prime}(z)\right] \\
& +z|z|^{m+1}\left(1-|z|^{m+1}\right)\left[\left(\frac{1-\alpha}{\alpha}\right) \frac{f^{\prime}(z)}{f(z)}+\frac{2}{\alpha} \frac{f^{\prime}(z) h(z)}{g(z)}+\frac{g^{\prime}(z)}{g(z)}\right] \\
& \left.\quad-\frac{m-1}{2}|z|^{m+1} \right\rvert\, \\
& \leq \frac{m+1}{2}|z|^{m+1}
\end{aligned}
$$

are satisfied for all $z \in U$, then the function f is univalent in U where the principal branch is intended.

Proof. Let a and b be two positive real numbers such that $m=\frac{b}{a}$. We prove that there exists a real number $r \in(0,1]$ such that the function $L: U_{r} \times I \rightarrow \mathbb{C}$, defined formally by

$$
\begin{equation*}
L(z, t)=f^{1-\alpha}\left(e^{-a t} z\right)\left[f\left(e^{-a t} z\right)+\frac{\left(e^{b t}-e^{-a t}\right) z g\left(e^{-a t} z\right)}{1+\left(e^{b t}-e^{-a t}\right) z h\left(e^{-a t} z\right)}\right]^{\alpha} \tag{3.3}
\end{equation*}
$$

is analytic in U_{r} for all $t \in I$.
Let us consider the function $\varphi_{1}(z, t)$ given by

$$
\begin{equation*}
\varphi_{1}(z, t)=1+\left(e^{b t}-e^{-a t}\right) z h\left(e^{-a t} z\right) \tag{3.4}
\end{equation*}
$$

For all $t \in I$ and $z \in U$ we have $e^{-a t} z \in U$ and because h analytic, the function $\varphi_{1}(z, t)$ is analytic in U and $\varphi_{1}(0, t)=1$. Then there exist a disc $U_{r_{1}}$, $0<r_{1}<1$, in which $\varphi_{1}(z, t) \neq 0$ for all $t \in I$ and $z \in U_{r_{1}}$.

For the function

$$
\begin{equation*}
\varphi_{2}(z, t)=\left[f\left(e^{-a t} z\right)+\frac{\left(e^{b t}-e^{-a t}\right) z g\left(e^{-a t} z\right)}{\varphi_{1}(z, t)}\right]^{\alpha}, \tag{3.5}
\end{equation*}
$$

$\varphi_{2}(z, t)=z^{\alpha} \varphi_{3}(z, t)$, it can be easily shown that $\varphi_{3}(z, t)$ is analytic in $U_{r_{1}}$ and $\varphi_{3}(0, t)=e^{\alpha b t}$ for all $t \in I$. From these considerations it follows that the function

$$
\begin{equation*}
L(z, t)=f^{1-\alpha}(z, t) \varphi_{2}(z, t) \tag{3.6}
\end{equation*}
$$

is analytic in $U_{r_{1}}$ for all $t \in I$ and has the following form

$$
L(z, t)=a_{1}(t) z+\cdots .
$$

We have

$$
\begin{equation*}
a_{1}(t)=e^{[\alpha(a+b)-a] t} \tag{3.7}
\end{equation*}
$$

for which we consider the uniform branch equal to 1 at the origin. Because $\Re(\alpha)>\frac{1}{m+1}$ is equivalent with $\Re(\alpha)>\frac{a}{a+b}$, we have that

$$
\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty
$$

Moreover, $a_{1}(t) \neq 0$ for all $t \in I$.
From the analyticity of $L(z, t)$ in $U_{r_{1}}$, it follows that there exists a number $r_{2}, 0<r_{2}<r_{1}$, and a constant $K=K\left(r_{2}\right)$ such that

$$
\left|\frac{L(z, t)}{a_{1}(t)}\right|<K, \quad \forall z \in U_{r_{2}}, t \in I
$$

Then, by Montel's Theorem, $\left\{\frac{L(z, t)}{a_{1}(t)}\right\}_{t \in I}$ is a normal family in $U_{r_{2}}$. From the analyticity of $\frac{\partial L(z, t)}{\partial t}$, we obtain that for all fixed numbers $T>0$ and $r_{3}, 0<$ $r_{3}<r_{2}$, there exists a constant $K_{1}>0$ (that depends on T and r_{3}) such that

$$
\left|\frac{\partial L(z, t)}{\partial t}\right|<K_{1}, \forall z \in U_{r_{3}}, t \in[0, T]
$$

Therefore, the function $L(z, t)$ is locally absolutely continuous in I, locally uniform with respect to $U_{r_{3}}$.

Let $p: U_{r} \times I \rightarrow \mathbb{C}$ be the function in $U_{r}, 0<r<r_{3}$ for all $t \in I$, defined by

$$
p(z, t)=z \frac{\partial L(z, t)}{\partial z} / \frac{\partial L(z, t)}{\partial t} .
$$

If the function

$$
\begin{equation*}
w(z, t)=\frac{p(z, t)-1}{p(z, t)+1}=\frac{\frac{z \partial L(z, t)}{\partial z}-\frac{\partial L(z, t)}{\partial t}}{\frac{z \partial L(z, t)}{\partial z}+\frac{\partial L(z, t)}{\partial t}} \tag{3.8}
\end{equation*}
$$

is analytic in $U \times I$ and $|w(z, t)|<1$ for all $z \in U$ and $t \in I$, then $p(z, t)$ has an analytic extension with positive real part in U for all $t \in I$. From equality (3.8) we have

$$
\begin{equation*}
w(z, t)=\frac{(1+a) A_{\alpha}(z, t)+(1-b)}{(1-a) A_{\alpha}(z, t)+(1+b)} \tag{3.9}
\end{equation*}
$$

where
(3.10)

$$
\begin{aligned}
& A_{\alpha}(z, t) \\
= & e^{-(a+b) t}\left\{\frac{f^{\prime}\left(e^{-a t} z\right)}{\alpha g\left(e^{-a t} z\right)}+\left(e^{b t}-e^{-a t}\right)^{2} z^{2}\left[\frac{(1-\alpha) f^{\prime}\left(e^{-a t} z\right) h\left(e^{-a t} z\right)}{\alpha f\left(e^{-a t} z\right)}\right.\right. \\
& \left.+\frac{f^{\prime}\left(e^{-a t} z\right) h^{2}\left(e^{-a t} z\right)}{\alpha g\left(e^{-a t} z\right)}+\frac{g^{\prime}\left(e^{-a t} z\right) h\left(e^{-a t} z\right)}{g\left(e^{-a t} z\right)}-h^{\prime}\left(e^{-a t} z\right)\right] \\
& \left.+\left(e^{b t}-e^{-a t}\right) z\left[\frac{(1-\alpha) f^{\prime}\left(e^{-a t} z\right)}{\alpha f\left(e^{-a t} z\right)}+2 \frac{f^{\prime}\left(e^{-a t} z\right) h\left(e^{-a t}\right)}{\alpha g\left(e^{-a t} z\right)}+\frac{g^{\prime}\left(e^{-a t} z\right)}{g\left(e^{-a t} z\right)}\right]-1\right\}
\end{aligned}
$$

for $z \in U$ and $t \in I$.

The inequality $|w(z, t)|<1$ for all $z \in U$ and $t \in I$, where $w(z, t)$ is defined by (3.9), is equivalent to

$$
\begin{equation*}
\left|A_{\alpha}(z, t)-\frac{b-a}{2 a}\right|<\frac{b+a}{2 a}, \quad \forall z \in U, t \in I \tag{3.11}
\end{equation*}
$$

Define

$$
\begin{equation*}
B_{\alpha}(z, t)=A_{\alpha}(z, t)-\frac{m-1}{2}, \quad \forall z \in U, t \in I . \tag{3.12}
\end{equation*}
$$

From (3.1), (3.10) and $\Re(\alpha)>\frac{1}{m+1}$ we have

$$
\begin{equation*}
\left|B_{\alpha}(z, 0)\right|=\left|\left(\frac{f^{\prime}(z)}{\alpha g(z)}-1\right)-\frac{m-1}{2}\right|<\frac{m+1}{2} \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|B_{\alpha}(0, t)\right|=\left|\left(\frac{1}{\alpha}-1\right)-\frac{m-1}{2}\right|<\frac{m+1}{2} . \tag{3.14}
\end{equation*}
$$

Since $\left|e^{-a t} z\right| \leq\left|e^{-a t}\right|=e^{-a t}<1$ for all $z \in \bar{U}=\{z \in \mathbb{C}:|z| \leq 1\}$ and $t>0$, we find that $B_{\alpha}(z, t)$ is an analytic function in \bar{U}. Using the maximum modulus principle it follows that for all $z \in U-\{0\}$ and each $t>0$ arbitrarily fixed there exists $\theta=\theta(t) \in \mathbb{R}$ such that

$$
\begin{equation*}
\left|B_{\alpha}(z, t)\right|<\max _{|z|=1}\left|B_{\alpha}(z, t)\right|=\left|B_{\alpha}\left(e^{i \theta}, t\right)\right| \tag{3.15}
\end{equation*}
$$

for all $z \in U$ and $t \in I$.
Denote $u=e^{-a t} e^{i \theta}$. Then $|u|=e^{-a t}, e^{-(a+b) t}=\left(e^{-a t}\right)^{m+1}=|u|^{m+1}$ and from (3.10) we have

$$
\begin{aligned}
& \left|B_{\alpha}\left(e^{i \theta}, t\right)\right| \\
= & \left.\left|\left(\frac{f^{\prime}(u)}{\alpha g(u)}-1\right)\right| u\right|^{m+1} \\
& +\frac{u^{2}\left(1-|u|^{m+1}\right)^{2}}{|u|^{m+1}}\left[\frac{(1-\alpha) f^{\prime}(u) h(u)}{\alpha f(u)}+\frac{f^{\prime}(u) h^{2}(u)}{\alpha g(u)}+\frac{g^{\prime}(u) h(u)}{g(u)}-h^{\prime}(u)\right] \\
& \left.+u\left(1-|u|^{m+1}\right)\left[\frac{(1-\alpha) f^{\prime}(u)}{\alpha f(u)}+2 \frac{f^{\prime}(u) h(u)}{\alpha g(u)}+\frac{g^{\prime}(u)}{g(u)}\right]-\frac{m-1}{2} \right\rvert\, .
\end{aligned}
$$

Because $u \in U$, the inequality (3.2) implies that

$$
\left|B_{\alpha}\left(e^{i \theta}, t\right)\right| \leq \frac{m+1}{2},
$$

and from (3.13), (3.14) and (3.15), we conclude that

$$
\left|B_{\alpha}(z, t)\right|=\left|A_{\alpha}(z, t)-\frac{m-1}{2}\right| \leq \frac{m+1}{2}
$$

for all $z \in U$ and $t \in I$. Therefore $|w(z, t)|<1$ for all $z \in U$ and $t \in I$.
Since all the conditions of Theorem 2.1 are satisfied, we obtain that the function $L(z, t)$ has an analytic and univalent extension to the whole unit disk U for all $t \in I$. For $t=0$ we have $L(z, 0)=f(z)$ for $z \in U$ and therefore the function f is analytic and univalent in U.

Remark 3.1. (1) By putting $m=1$ in Theorem 3.1 we obtain all Tudor's results in [14].
(2) The univalence criteria which results from Theorem 3.1 when $m=1$ and $\alpha=1$ is due to Ovesea-Tudor and Owa in [6].
Corollary 3.1. Let m be a positive real number and let α be a complex number such that $\Re(\alpha)>\frac{1}{m+1}$ and $f \in A$. Suppose that there exists an analytic function h in $U, h(z)=c_{0}+c_{1} z+\cdots$. If the following inequality

$$
\begin{align*}
& \left.\left|\left(\frac{1}{\alpha}-1\right)\right| z\right|^{2(m+1)} \tag{3.17}\\
& \quad+z^{2}\left(1-|z|^{m+1}\right)^{2}\left[\frac{(1-\alpha) f^{\prime}(z) h(z)}{\alpha f(z)}+\frac{h^{2}(z)}{\alpha}+\frac{f^{\prime \prime}(z) h(z)}{f^{\prime}(z)}-h^{\prime}(z)\right] \\
& \left.\quad+z|z|^{m+1}\left(1-|z|^{m+1}\right)\left[\frac{(1-\alpha) f^{\prime}(z)}{\alpha f(z)}+\frac{2 h(z)}{\alpha}+\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]-\frac{m+1}{2}|z|^{m+1} \right\rvert\, \\
& \leq \frac{m+1}{2}|z|^{m+1}
\end{align*}
$$

holds true for all $z \in U$, then the function f is univalent in U where the principal branch is intended.

Proof. It results from Theorem 3.1 with $g=f^{\prime}$.
If we choose $g=f^{\prime}$ and $h=-\frac{1}{2} \frac{f^{\prime \prime}}{f^{\prime}}$ in Theorem 3.1 we obtain the following univalence criterion.

Corollary 3.2. Let m be a positive real number and let α be a complex number such that $\Re(\alpha)>\frac{1}{m+1}$ and $f \in A$. If the following inequality

$$
\begin{align*}
& \left.\quad\left|\left(\frac{1}{\alpha}-1\right)\right| z\right|^{2(m+1)} \tag{3.18}\\
& \quad+\left(1-|z|^{m+1}\right)^{2}\left\{\frac{1}{2} z^{2}\{f ; z\}+\frac{1}{2}\left(\frac{1-\alpha}{\alpha}\right)\left[\frac{1}{2}\left(\frac{z f^{\prime \prime}(z)}{f(z)}\right)^{2}-\frac{z^{2} f^{\prime \prime}(z)}{f(z)}\right]\right\} \\
& \left.\quad+|z|^{m+1}\left(1-|z|^{m+1}\right)\left(\frac{1-\alpha}{\alpha}\right)\left[\frac{z f^{\prime}(z)}{f(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]-\frac{m-1}{2}|z|^{m+1} \right\rvert\, \\
& \leq \frac{m+1}{2}|z|^{m+1}
\end{align*}
$$

holds true for all $z \in U$, then the function f is univalent in U, where the principal branch is intended.

Remark 3.2. (1) If we consider $m=1$ and $\alpha=1$ in Corollary 3.2, the inequality (3.18) becomes (1.3) and then we obtain the univalence criterion due to Nehari [4].
(2) Setting $m=1$ in Corollary 3.2, we obtain the univalence criterion due to Raducanu [9].
Corollary 3.3. Let m be a positive real number and let α be a complex number such that $\Re(\alpha)>\frac{1}{m+1}$ and $f \in A$. Suppose there exists an analytic function $h(z)$ in $U, h(z)=c_{0}+c_{1} z+\cdots$. If the following inequalities

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{\alpha f^{2}(z)}-\frac{m+1}{2}\right|<\frac{m+1}{2} \tag{3.19}
\end{equation*}
$$

and
(3.20)

$$
\begin{aligned}
& \left.\left|\left(\frac{z^{2} f^{\prime}(z)}{\alpha f^{2}(z)}-1\right)\right| z\right|^{2(m+1)} \\
& \quad+z^{2}\left(1-|z|^{m+1}\right)^{2}\left[\frac{(1+\alpha) f^{\prime}(z) h(z)}{\alpha f(z)}+\frac{z^{2} f^{\prime}(z) h^{2}(z)}{\alpha f^{2}(z)}-\frac{2 h(z)}{z}-h^{\prime}(z)\right] \\
& \left.\quad+z|z|^{m+1}\left(1-|z|^{m+1}\right)\left[\frac{(1+\alpha) f^{\prime}(z)}{\alpha f(z)}+\frac{2 z^{2} f^{\prime}(z) h(z)}{\alpha f^{2}(z)}-\frac{2}{z}\right]-\frac{m-1}{2}|z|^{m+1} \right\rvert\, \\
& \leq \frac{m+1}{2}|z|^{m+1}
\end{aligned}
$$

are satisfied for all $z \in U$, then the function f is univalent in U where the principal branch is intended.
Proof. It results from Theorem 3.1 with $g(z)=\left(\frac{f(z)}{z}\right)^{2}$.
If we choose $g(z)=\left(\frac{f(z)}{z}\right)^{2}$ and $h(z)=\frac{1}{z}-\frac{f(z)}{z^{2}}$ in Theorem 3.1 we obtain the following corollary.

Corollary 3.4. Let m be a positive real number and let α be a complex number such that $\Re(\alpha)>\frac{1}{m+1}$ and $f \in A$. If the following inequalities

$$
\begin{equation*}
\left|\left(\frac{z^{2} f^{\prime}(z)}{\alpha f^{2}(z)}-1\right)-\frac{m-1}{2}\right|<\frac{m+1}{2} \tag{3.21}
\end{equation*}
$$

and

$$
\begin{align*}
& \left.\left.\left|\left(\frac{z^{2} f^{\prime}(z)}{\alpha f^{2}(z)}-1\right)+\left(\frac{\alpha-1}{\alpha}\right)\left(1-|z|^{m+1}\right)\left(\frac{z f^{\prime}(z)}{f(z)}\right)-\frac{m-1}{2}\right| z\right|^{m+1} \right\rvert\, \tag{3.22}\\
\leq & \frac{m+1}{2}|z|^{m+1}
\end{align*}
$$

are satisfied for all $z \in U$, then the function f is univalent in U, where the principal branch is intended.
Remark 3.3. (1) If we consider $\alpha=1$ in Corollary 3.4 we obtain the univalence criterion due to Raducanu et al. [13].
(2) Putting $m=1$ in Corollary 3.4 we obtain the univalence criterion due to Raducanu [10].
(3) If we consider $m=1$ and $\alpha=1$ in Corollary 3.4, the inequalities (3.21) and (3.22) becomes (1.2) and then we obtain the univalence criterion due to Ozaki-Nunokawa [7].

Corollary 3.5. Let m be a positive real number and let α be a complex number such that $\Re(\alpha)>\frac{1}{m+1}$ and $f \in A$. If the following inequality

$$
\left|\left(\frac{1}{\alpha}-1\right)-\frac{m-1}{2}\right|<\frac{m+1}{2}
$$

$$
\begin{align*}
& \quad \left\lvert\, \frac{1-\alpha}{\alpha}\left[1-\left(1-|z|^{m+1}\right) \frac{z f^{\prime}(z)}{f(z)}\right]\right. \tag{3.23}\\
& \left.\quad+\left(1-|z|^{m+1}\right) z \frac{d}{d z}\left[\log \frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right]-\frac{m-1}{2}|z|^{m+1} \right\rvert\, \\
& \leq \frac{m+1}{2}|z|^{m+1}
\end{align*}
$$

is satisfied for all $z \in U$, then the function f is univalent in U where the principal branch is intended.
Proof. It results from Theorem 3.1 with $g(z)=f^{\prime}(z)$ and $h(z)=\frac{1}{z}-\frac{f^{\prime}(z)}{f(z)}$.
Remark 3.4. (1) If we consider $m=1$ in Corollary 3.5 we obtain the univalence criterion due to Raducanu [11].
(2) For $m=1$ and $\alpha=1$ in Corollary 3.5 we obtain Goluzin's criterion for univalence [3].
Corollary 3.6. Let m be a positive real number and let α be a complex number such that $\Re(\alpha)>\frac{1}{m+1}$ and $f \in A$. If the following inequality
$\left.\left.\left|\left(\frac{1}{\alpha}-1\right)\right| z\right|^{m+1}+z\left(1-|z|^{m+1}\right)\left[\left(\frac{1-\alpha}{\alpha}\right) \frac{f^{\prime}(z)}{f(z)}+\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right]-\frac{m-1}{2} \right\rvert\, \leq \frac{m+1}{2}$
is satisfied for all $z \in U$, then the function f is univalent in U where the principal branch is intended.
Proof. It results from Theorem 3.1 with $g(z)=f^{\prime}(z)$ and $h(z)=0$.
Remark 3.5. If we consider $\alpha=m=1$ in Corollary 3.6, the inequality (3.24) becomes (1.1) and then we obtain the univalence criterion due to Becker [1].
Finally, if we take $\alpha \rightarrow \infty$ in Corollary $3.6(z \in U)$ we obtain another univalence criterion as follows.

Corollary 3.7. Let m be a positive real number and $f \in A$. If the following inequality

$$
\begin{equation*}
\left|z\left(1-|z|^{m+1}\right)\left[\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{f^{\prime}(z)}{f(z)}\right]-|z|^{m+1}-\frac{m-1}{2}\right| \leq \frac{m+1}{2} \tag{3.25}
\end{equation*}
$$

holds true for all $z \in U$, then the function f is univalent in U where the principal branch is intended.

Remark 3.6. If we consider $\alpha \rightarrow \infty, z \in U$ in the Corollaries 3.1 and 3.2 we can obtain other new univalence criteria.
Remark 3.7. The famous univalence criteria obtained by Nehari, Ozaki-Nunokawa and Becker contain $|z|^{2}$ in their expressions. From Theorem 3.1 we obtain new and more general results with $|z|^{m+1}(m>0)$ instead of $|z|^{2}$.

Example 3.1. The function

$$
\begin{equation*}
f(z)=\frac{z}{1-\frac{z^{m+1}}{m+1}}, \quad(m \geq 1) \tag{3.26}
\end{equation*}
$$

is analytic and univalent in U.
Proof. From equality (3.26) we have

$$
\begin{equation*}
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1=\frac{m}{m+1} z^{m+1} \tag{3.27}
\end{equation*}
$$

Taking into account (3.27), $\alpha=1$ and $m \geq 1$, the conditions (3.21) and (3.22) in Corollary 3.4 becomes, respectively,

$$
\begin{aligned}
\left|\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right)-\frac{m-1}{2}\right| & =\left|\frac{m}{m+1} z^{m+1}-\frac{m-1}{2}\right| \\
& <\frac{m}{m+1}+\frac{m-1}{2}=\frac{m^{2}+2 m-1}{2(m+1)}<\frac{m+1}{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\left.\frac{1}{|z|^{m+1}}\left|\left(\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right)-\frac{m-1}{2}\right| z\right|^{m+1} \right\rvert\, \\
= & \left.\left.\frac{1}{|z|^{m+1}}\left|\frac{m}{m+1} z^{m+1}-\frac{m-1}{2}\right| z\right|^{m+1} \right\rvert\,<\frac{m}{m+1}+\frac{m-1}{2} \\
= & \frac{m^{2}+2 m-1}{2(m+1)}<\frac{(m+1)^{2}}{2(m+1)}<\frac{m+1}{2},
\end{aligned}
$$

which are satisfied the conditions (3.21) and (3.22) of Corollary 3.4. It follows that the function f defined by (3.26) is analytic and univalent in U. By using the Mathematica 7.0 program, for $m=5$, we can obtain the graphic of $f(z)=$ $\frac{z}{1-z^{6} / 6}$ (see Figure 1).
Acknowledgments. Authors thank the referee so much for valuable suggestions on this work.

Figure 1

References

[1] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43.
[2] E. Deniz, D. Raducanu and H. Orhan, On an improvement of an univalence criterion, Math. Balkanica (N.S.) 24 (1-2) (2010), 33-39.
[3] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, Vol. 26 American Mathematical Society, Providence, R.I. 1969.
[4] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551.
[5] H. Orhan and E. Deniz, On a generalization of Ruscheweyh's univalence criterion, (submitted).
[6] H. Ovesea-Tudor and S. Owa, An extension of the univalence criteria of Nehari and Ozaki and Nunokawa, Hokkaido Math. J. 34 (2005), no. 3, 533-539.
[7] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392-394.
[8] Ch. Pommerenke, Univalent Functions, Vandenhoeck \& Ruprecht, Gottingen, 1975.
[9] D. Raducanu, On a univalence criterion, Mathematica $\mathbf{3 7}$ (60) (1995), no. 1-2, 227-231.
[10] \qquad , On a generalization of Ozaki's univalence criterion, (to appear).
[11] \qquad A univalence criterion for analytic functions in the unit disk, Mathematica 46(69) (2004), no. 2, 213-216.
[12] D. Raducanu, H. Orhan, and E. Deniz, On some sufficient conditions for univalence, An. Ştiinţ Univ. "Ovidius" Constanţa Ser. Mat. 18 (2) (2010), 217-222.
[13] D. Raducanu, I. Radomir, M. E. Gageonea, and N. R. Pascu, A generalization of OzakiNunokawa's univalence criterion, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 4, Article 95, 4 pp.
[14] H. Tudor, New univalence criteria, Stud. Univ. Babeş-Bolyai Math. 52 (2007), no. 2, 127-132.

Erhan Deniz
Department of Mathematics
Faculty of Science
Ataturk University
25240 Erzurum, Turkey
E-mail address: edeniz36@yahoo.com
Halit Orhan
Department of Mathematics
Faculty of Science
Ataturk University
25240 Erzurum, Turkey
E-mail address: horhan@atauni.edu.tr

