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NONDIFFERENTIABLE SECOND-ORDER MINIMAX MIXED

INTEGER SYMMETRIC DUALITY

Tilak Raj Gulati and Shiv Kumar Gupta

Abstract. In this paper, a pair of Wolfe type nondifferentiable sec-
ond order symmetric minimax mixed integer dual problems is formu-
lated. Symmetric and self-duality theorems are established under η1-

bonvexity/η2-boncavity assumptions. Several known results are obtained
as special cases. Examples of such primal and dual problems are also
given.

1. Introduction

Minimax mathematical programming has applications in several optimiza-
tion problems, e.g., game theory, the design of electronic circuits, approxima-
tion theory and various situations relating to decision making under uncer-
tainty.

Dorn [6] introduced symmetric dual for quadratic programming problems.
Subsequently, Dantzig et al. [5] and Bazaraa and Goode [3] studied symmet-
ric duality in nonlinear programming assuming the kernel function f(x, y) to
be convex in the first variable and concave in the second variable. Balas [2]
generalized symmetric duality of Dantzig et al. [5] by constraining some of
the primal and dual variables to belong to arbitrary sets and thus introduced
minimax symmetric dual programs.

Mangasarian [10] considered a nonlinear programs and discussed second or-
der duality under certain inequalities. Mond [12] established Mangasarian’s
duality relations assuming f(x, y) to be bonvex/boncave. Mangasarian [10, p.
609], Mond [12, p. 93] and Hanson [8, p. 316] have indicated usefulness of
second order dual over the first order dual.

Hou and Yang [9] considered Mond-Weir type second order symmetric du-
ality involving nondifferentiable functions. Gulati and Gupta [7] discussed a
pair of Wolfe type nondifferentiable second order symmetric programs involving
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support functions and relaxing the nonnegativity conditions in the problems
studied by Yang et al. [13].

In this paper, we consider a pair of Wolfe type nondifferentiable second
order symmetric minimax mixed integer programs and use the results of Gu-
lati and Gupta [7] to establish symmetric and self-duality theorems under η1-
bonvexity/η2-boncavity assumptions. The duality results obtained in this pa-
per extend some of the known results in the literature. Examples have also
been given in the end.

2. Notations and preliminaries

Let Rn denotes the n-dimensional Euclidean space. Let U and V be two
arbitrary sets of integers in Rn1 and Rm1 , respectively. Throughout this paper,
we constrain some of the components of x and y to belong to arbitrary sets of
integers as in Balas [2]. Suppose that the first n1 (0 ≤ n1 ≤ n) components
of x belong to U and the first m1 (0 ≤ m1 ≤ m) components of y belong to
V . Then we write (x, y) = (x1, x2, y1, y2) where x1 = (x1, x2, . . . , xn1) and
y1 = (y1, y2, . . . , ym1), x

2 and y2 belong to Rn−n1 and Rm−m1 , respectively.
Let k(x, y) be a real valued twice differentiable function defined on an open set
in Rn × Rm. Let ∇x2k(x̄, ȳ) denotes the gradient vector of k with respect to
x2 at (x̄, ȳ). Also let ∇x2x2k(x̄, ȳ) denotes the Hessian matrix with respect to
x2 evaluated at (x̄, ȳ). ∇y2k(x̄, ȳ) and ∇y2y2k(x̄, ȳ) are defined similarly.

Definition 1. A real twice differentiable function f defined on a set X × Y ,
where X and Y are open sets in Rn and Rm respectively, is said to be η1-bonvex
in the first variable at u ∈ X, if there exists a function η1 : X ×X → Rn such
that for v ∈ Y, r ∈ Rn, x ∈ X,

f(x, v)− f(u, v) ≥ η1
T (x, u)[∇xf(u, v) +∇xxf(u, v)r]−

1

2
rT∇xxf(u, v)r,

and f(x, y) is said to be η2-bonvex in the second variable at v ∈ Y , if there
exists a function η2 : Y × Y → Rm such that for u ∈ X, p ∈ Rm, y ∈ Y ,

f(u, y)− f(u, v) ≥ η2
T (y, v)[∇yf(u, v) +∇yyf(u, v)p]−

1

2
pT∇yyf(u, v)p.

A twice differentiable function f is η-boncave if −f is η-bonvex.

Definition 2. Let C be a compact convex set in Rn. The support function of
C is defined by

S(x|C) = max {xT y : y ∈ C}.
A support function, being convex and everywhere finite, has a subdifferen-

tial, that is, there exists z ∈ Rn such that

S(y|C) ≥ S(x|C) + zT (y − x) for all y ∈ C.

The subdifferential of S(x|C) is given by

∂S(x|C) = {z ∈ C : zTx = S(x|C)}.
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For any set S ⊂ Rn the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT (z − x) ≤ 0 for all z ∈ S}.
It can be easily seen that for a compact convex set C, y is in NC(x) if and only
if S(y|C) = xT y, or equivalently, x is in ∂S(y|C).

Definition 3. Let s1, s2, . . . , sp be elements of an arbitrary vector space. A
vector function G(s1, s2, . . . , sp) will be called additively separable with respect
to s1 if there exist vector functions H(s1) (independent of s2, . . . , sp) and
K(s2, . . . , sp) (independent of s1), such that

G(s1, s2, . . . , sp) = H(s1) +K(s2, . . . , sp).

3. Wolfe type minimax mixed integer programming

We now consider the following pair of Wolfe type nondifferentiable second
order minimax mixed integer symmetric dual programs:

Primal Problem (SP):

Maxx1Minx2,y,z M(x, y, p) = f(x, y) + S(x2|C)− (y2)
T∇y2f(x, y)

− (y2)
T∇y2y2f(x, y)p− 1

2
pT∇y2y2f(x, y)p

subject to

∇y2f(x, y)− z +∇y2y2f(x, y)p ≤ 0,(1)

z ∈ D,(2)

x1 ∈ U, y1 ∈ V.(3)

Dual Problem (SD):

Minv1Maxu,v2,w N(u, v, r) = f(u, v)− S(v2|D)− (u2)
T∇x2f(u, v)

− (u2)
T∇x2x2f(u, v)r − 1

2
rT∇x2x2f(u, v)r

subject to

∇x2f(u, v) + w +∇x2x2f(u, v)r ≥ 0,(4)

w ∈ C,(5)

u1 ∈ U, v1 ∈ V,(6)

where
1. f is a differentiable function from Rn × Rm → R,
2. r, w are vectors in Rn−n1 and p, z are vectors in Rm−m1 , and
3. C and D are compact convex sets in Rn−n1and Rm−m1 , respectively.

Theorem 1 (Symmetric duality). Let (x̄, ȳ, z̄, p̄) be an optimal solution for
(SP). Also, let

(i) f(x, y) be additively separable with respect to x1 or y1;
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(ii) f(u, v)+(u2)
T
w be η1-bonvex in u2 for each (u1, v) and f(x, y)− (y2)

T
z

be η2-boncave in y2 for each (x, y1);
(iii) f(x, y) be thrice differentiable in x2 and y2;
(iv) ∇y2y2f(x̄, ȳ) be non-singular;

(v) one of the matrices ∂
∂yi

2 (∇y2y2k(x̄, ȳ)), i = m1 + 1,m2 + 1, . . . ,m be

positive or negative definite;
(vi) η1(x

2, u2) + u2 ≥ 0 and η2(v
2, y2) + y2 ≥ 0 for any feasible solution

(x, y, z, p) in (SP) and any feasible solution (u, v, w, r) in (SD).
Then, p̄ = 0 and there exist w̄ such that (x̄, ȳ, w̄, r̄ = 0) is an optimal solution
for (SD) and the values of two objective functions are equal.

Proof. Let

q = Maxx1Minx2,y,z {f(x, y) + S(x2|C)−(y2)
T∇y2f(x, y)−(y2)

T∇y2y2f(x, y)p

− 1

2
pT∇y2y2f(x, y)p : (x, y, z, p) ∈ S}

and

t = Minv1Maxu,v2,w {f(u, v)−S(v2|D)−(u2)
T∇x2f(u, v)−(u2)

T∇x2x2f(u, v)r

− 1

2
rT∇x2x2f(u, v)r : (u, v, w, r) ∈ T},

where S and T are feasible regions of primal (SP) and dual (SD) respectively.
Since f(x, y) is additively separable with respect to x1 or y1 (say with respect
to x1), it follows that

(7) f(x, y) = f1(x1) + f2(x2, y).

Therefore ∇y2f(x, y) = ∇y2f2(x2, y) and q can be written as

q = Maxx1Minx2,y,z { f1(x1) + f2(x2, y) + S(x2|C)− (y2)
T∇y2f2(x2, y)

− (y2)
T∇y2y2f2(x2, y)p− 1

2
pT∇y2y2f2(x2, y)p :

∇y2f2(x2, y)− z +∇y2y2f2(x2, y)p ≤ 0,

z ∈ D, x1 ∈ U, y1 ∈ V },
or

(8) q = Maxx1 Miny1 {f1(x1) + ϕ(y1) : x1 ∈ U, y1 ∈ V },
where

(9)

ϕ(y1) = Minx2,y2,z { f2(x2, y) + S(x2|C)− (y2)
T∇y2f2(x2, y)

− (y2)
T∇y2y2f2(x2, y)p− 1

2
pT∇y2y2f2(x2, y)p :

∇y2f2(x2, y)− z +∇y2y2f2(x2, y)p ≤ 0, z ∈ D}.
Similarly,

(10) t = Minv1 Maxu1 {f1(u1) + ψ(v1) : u1 ∈ U, v1 ∈ V },
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where

ψ(v1) = Maxu2,v2,w { f2(u2, v)− S(v2|D)− (u2)
T∇x2f2(u2, v)

(11)

− (u2)
T∇x2x2f2(u2, v)r − 1

2
rT∇x2x2f2(u2, v)r :

∇x2f2(u2, v) + w +∇x2x2f2(u2, v)r ≥ 0, w ∈ C}.

For any given y1 and v1, programs (9) and (11) are a pair of Wolfe type second
order symmetric dual non-differentiable programs of Gulati and Gupta [7] and
hence in view of hypotheses (ii)-(vi), Theorem 3.2 in [7] becomes applicable.
Therefore, for y1 = ȳ1 = v1 we obtain

p̄ = 0 and ϕ(ȳ1) = ψ(ȳ1).

Now, we need only to show that (x̄, ȳ, w̄, r̄ = 0) is optimal for (SD). If this is
not the case, then there exist y∗1 ∈ V such that ψ(y∗1) < ψ(ȳ1). But then, in
view of assumptions (iv) and (v), we have

ϕ(ȳ1) = ψ(ȳ1) > ψ(y∗1) = ϕ(y∗1),

contradicting the optimality of (x̄, ȳ, z̄, p̄ = 0) for (SP). Hence (x̄, ȳ, w̄, r̄ = 0)
is an optimal solution for (SD). □

4. Self duality

A mathematical problem is said to be self dual if it is formally identical with
its dual, that is, if the dual is recast in the form of the primal, the new problem
so obtained is the same as the primal. In general, (SP) and (SD) are not self
dual without an added restriction on f. The vector function f : Rn ×Rm 7→ R
is said to be skew symmetric if for all x, y ∈ Rn, f(y, x) = −f(x, y).

Theorem 2. Let f : Rn × Rn 7→ R be skew symmetric and D = C. Then
(SP) is a self dual. Furthermore, if (SP) and (SD) are dual programs and
(x̄, ȳ, z̄, p̄) is an optimal solution for (SP), then p̄ = 0, (ȳ, x̄, z̄, r̄ = 0) is an
optimal solution for (SD). Moreover, if y2 ≥ 0 and u2 ≥ 0, then the values of
two objective functions are equal to zero.

Proof. The dual problem (SD) can be written as

Maxv1Minu,v2,w − f(u, v) + S(v2|D) + (u2)
T∇x2f(u, v)

+ (u2)
T∇x2x2f(u, v)r +

1

2
rT∇x2x2f(u, v)r

subject to

−∇x2f(u, v)− w −∇x2x2f(u, v)r ≤ 0,

w ∈ C,

u1 ∈ U, v1 ∈ V.
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Since k is skew symmetric, ∇x2f(u, v) = −∇y2f(v, u) and ∇x2x2f(u, v) =
−∇y2y2f(v, u).

Also, since D = C, the above problem becomes

Maxv1Minu,v2,wf(v, u) + S(v2|C)− (u2)
T∇y2f(v, u)− (u2)

T∇y2y2f(v, u)r

− 1

2
rT∇y2y2f(v, u)r

subject to

∇y2f(v, u)− w +∇y2y2f(v, u)r ≤ 0,

w ∈ D,

u1 ∈ U, v1 ∈ V,

which is the primal problem (SP). Thus (SP) is a self dual problem. Hence if
(x̄, ȳ, w̄, p̄) is optimal for (SP), then p̄ = 0 and (ȳ, x̄, w̄, r̄ = 0) is optimal for
(SD). Also, M(x̄, ȳ, p̄) = N(ȳ, x̄, r̄). Now we show that M(x̄, ȳ, p̄) = 0.

M(x̄, ȳ, p̄) = f(x̄, ȳ) + S(x̄2|C)− (ȳ2)
T∇y2f(x̄, ȳ)− (ȳ2)

T∇y2y2f(x̄, ȳ)p̄

− 1

2
p̄T∇y2y2f(x̄, ȳ)p̄

≥ f(x̄, ȳ) + S(x̄2|C)− (ȳ2)
T
z (using (1), ȳ2 ≥ 0 and p̄ = 0)

≥ f(x̄, ȳ) + S(x̄2|C)− S(ȳ2|D) (since (ȳ2)
T
z ≤ S(ȳ2|D))

≥ f(x̄, ȳ). (using C = D)

Similarly, N(x̄, ȳ, r̄) ≤ f(x̄, ȳ). Hence by Theorem 1,

f(x̄, ȳ) ≤M(x̄, ȳ, p̄) = N(x̄, ȳ, r̄) ≤ f(x̄, ȳ),

which implies

M(x̄, ȳ, p̄) = N(ȳ, x̄, r̄) = f(x̄, ȳ) = f(ȳ, x̄) = −f(x̄, ȳ).
and therefore M(x̄, ȳ, p̄) = 0. □

5. Special cases

(i) Let U and V be empty sets. Then (SP) and (SD) are reduced to the
second order nondifferentiable symmetric dual programs of Gulati and Gupta
[7].

(ii) Let U and V be empty sets and C = {Ay : yTAy ≤ 1}, D = {Bx : xTBx
≤ 1} and η1(x, u) = x − u, η2(v, y) = v − y, where A and B are positive
semidefinite matrices with p = 0 and r = 0, then (xTAx)1/2 = S(x|C) and
(yTBy)1/2 = S(y|D). In this case (SP) and (SD) reduce to the problems (WP)
and (WD) as considered in Ahmad and Husain [1].

(iii) Let p = 0 and r = 0, η1(x, u) = x− u, η2(v, y) = v− y. Then we obtain
the mixed integer primal (P) and dual (D) considered in Chandra and Abha
[4].
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(iv) If we take C = {0} and D = {0}, then our programs reduce to the
problem (NP) and (ND) studied in Mishra [11].

6. Examples

Let n = m = 3, x1 = (x1, x2), x
2 = x3, y

1 = (y1, y2), and y
2 = y3.

1. Let f(x, y) = x21+x
2
2+x

2
3−ey1 −ey2 −ey3 , C = [0, 1] and D = {0}. Then

S(x2|C) = x3 + |x3|
2

, S(v2|D) = 0

and our problems (SP)and (SD) reduce to

Primal problem (SP1):

Maxx1Minx2,y,z x
2
1 + x22 + x23 − ey1 − ey2 − ey3 +

x3 + |x3|
2

+ ey3(y3 + y3p+
1

2
p2)

subject to

ey3(1 + p) ≥ 0,

x1 ∈ U, y1 ∈ V.

Dual problem (SD1):

Minv1Maxu,v2,w u21 + u22 + u23 − ev1 − ev2 − ev3 − 2(u3)2 − 2u3r − r2

subject to

2x3 + w + 2r ≥ 0,

w ∈ [0, 1],

u1 ∈ U, v1 ∈ V.

Therefore, our results give the duality relations for (SP1) and (SD1), which can-
not be obtained from the work in Chandra and Abha [4] as the above dual pair
is a second order minimax mixed integer problem involving a nondifferentiable
term.

2. Let f(x, y) = ex1 + ex2 + ex3 − ey1 − ey2 − ey3 , C = D = [0, 1]. Then

S(x2|C) = x3 + |x3|
2

, S(v2|D) =
v2 + |v2|

2

and problems (SP)and (SD) become

Primal problem (SP2):

Maxx1Minx2,y,z e
x1 + ex2 + ex3 − ey1 − ey2 − ey3 +

x3 + |x3|
2

+ ey3(y3 + y3p+
1

2
p2)
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subject to

ey3(1 + p) + z ≥ 0,

z ∈ [0, 1],

x1 ∈ U, y1 ∈ V.

Dual problem (SD2):

Minv1Maxu,v2,w eu1 + eu2 + eu3 − ev1 − ev2 − ev3 − v2 + |v2|
2

− eu3(u3 + u3p+
1

2
r2)

subject to

eu3(1 + r) + w ≥ 0

w ∈ [0, 1],

u1 ∈ U, v1 ∈ V.

Clearly f(x, y) = −f(y, x). Therefore, the problem (SP2) is a self dual and
hence Theorem 2 is applicable for this pair.
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