DOI QR코드

DOI QR Code

A High-Speed Single Crystal Silicon AFM Probe Integrated with PZT Actuator for High-Speed Imaging Applications

  • Cho, Il-Joo (Nano-Bio Center, Korea Institute of Science and Technology) ;
  • Yun, Kwang-Seok (Department of Electronic Engineering, Sogang University) ;
  • Nam, Hyo-Jin (Devices and Materials Lab, LG Electronics Institute of Technology)
  • Received : 2010.07.20
  • Accepted : 2010.08.10
  • Published : 2011.01.01

Abstract

A new high speed AFM probe has been proposed and fabricated. The probe is integrated with PZT actuated cantilever realized in bulk silicon wafer using heavily boron doped silicon as an etch stop layer. The cantilever thickness can be accurately controlled by the boron diffusion process. Thick SCS cantilever and integrated PZT actuator make it possible to be operated at high speed for fast imaging. The resonant frequency of the fabricated probe is 92.9 kHz and the maximum deflection is 5.3 ${\mu}m$ at 3 V. The fabricated probe successfully measured the surface of standard sample in an AFM system at the scan speed of 600${\mu}m$/sec.

Keywords

References

  1. B. Chui, T. Stowe, Y. Ju, K. Goodson, T. Kenny, H. Mamin, B. Terris, R. Ried, and D. Rugar, "Lowstiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage", Journal of Microelectromechanical Systems, Vol. 7, p. 69, 1998. https://doi.org/10.1109/84.661386
  2. C. Mart n, G. Rius, X. Borrise, and F. Perez-Murano, "Nanolithography on thin layers of PMMA using atomic force microscopy", Nanotechnology, Vol. 16, pp. 1016-1022, 2005. https://doi.org/10.1088/0957-4484/16/8/003
  3. S. Sen, S. Subramanian and D. E. Discher, "Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments", Biophysical Journal, Vol. 89, issue 5, pp. 3203-3213, 2005. https://doi.org/10.1529/biophysj.105.063826
  4. D. Fotiadis, S. Scheuring, S. A. Muller, A. Engel and D. J. Muller, "Imaging and manipulation of biological structures with the AFM", Micron, Vol. 33, issue 4, pp. 385-397, 2005.
  5. Y. Kim, H. Nam, S. Cho, J. Hong, D. Kim, and J. Bu, "PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM," Sensors & Actuators: A. Physical, Vol. 103, pp. 122-129, 2003. https://doi.org/10.1016/S0924-4247(02)00311-4
  6. T. Sulchek, R. Hsieh, J. Adams, G. Yaralioglu, S. Minne, C. Quate, J. Cleveland, A. Atalar, and D. Adderton, "High-speed tapping mode imaging with active Q control for atomic force microscopy," Applied Physics Letters, Vol. 76, p. 1473, 2000. https://doi.org/10.1063/1.126071
  7. I. Cho, E. Park, S. Hong, and E. Yoon, "Atomic force microscope probe tips using heavily boron-doped silicon cantilevers realized in a < 110> bulk silicon wafer," Jpn. J. Appl. Phys, Vol. 39, pp. 7103-7107, 2000. https://doi.org/10.1143/JJAP.39.7103

Cited by

  1. Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content vol.51, pp.7R, 2012, https://doi.org/10.7567/JJAP.51.075802
  2. Electrical and structural properties of 0.98(Na0.5K0.5)NbO3-0.02LiSbO3 ceramics with ZnO content vol.60, pp.7, 2012, https://doi.org/10.3938/jkps.60.1114
  3. Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Li0.04(Sb0.06Ta0.1)O3 ceramics vol.58, 2014, https://doi.org/10.1016/j.materresbull.2014.04.057
  4. Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1068-4
  5. Electrical properties of lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Zr0.52Ti0.48)O3ceramics vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0904-2
  6. Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition vol.11, pp.3, 2015, https://doi.org/10.1007/s13391-015-4419-0
  7. Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
  8. Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5
  9. Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
  10. Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
  11. Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics vol.8, pp.1, 2012, https://doi.org/10.1007/s13391-011-1063-1
  12. Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095
  13. Piezoelectric and dielectric properties of (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 ceramics with sintering temperature vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0905-1
  14. Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature vol.7, pp.1, 2012, https://doi.org/10.1186/1556-276X-7-15