References
- B. Chui, T. Stowe, Y. Ju, K. Goodson, T. Kenny, H. Mamin, B. Terris, R. Ried, and D. Rugar, "Lowstiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage", Journal of Microelectromechanical Systems, Vol. 7, p. 69, 1998. https://doi.org/10.1109/84.661386
- C. Mart n, G. Rius, X. Borrise, and F. Perez-Murano, "Nanolithography on thin layers of PMMA using atomic force microscopy", Nanotechnology, Vol. 16, pp. 1016-1022, 2005. https://doi.org/10.1088/0957-4484/16/8/003
- S. Sen, S. Subramanian and D. E. Discher, "Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments", Biophysical Journal, Vol. 89, issue 5, pp. 3203-3213, 2005. https://doi.org/10.1529/biophysj.105.063826
- D. Fotiadis, S. Scheuring, S. A. Muller, A. Engel and D. J. Muller, "Imaging and manipulation of biological structures with the AFM", Micron, Vol. 33, issue 4, pp. 385-397, 2005.
- Y. Kim, H. Nam, S. Cho, J. Hong, D. Kim, and J. Bu, "PZT cantilever array integrated with piezoresistor sensor for high speed parallel operation of AFM," Sensors & Actuators: A. Physical, Vol. 103, pp. 122-129, 2003. https://doi.org/10.1016/S0924-4247(02)00311-4
- T. Sulchek, R. Hsieh, J. Adams, G. Yaralioglu, S. Minne, C. Quate, J. Cleveland, A. Atalar, and D. Adderton, "High-speed tapping mode imaging with active Q control for atomic force microscopy," Applied Physics Letters, Vol. 76, p. 1473, 2000. https://doi.org/10.1063/1.126071
- I. Cho, E. Park, S. Hong, and E. Yoon, "Atomic force microscope probe tips using heavily boron-doped silicon cantilevers realized in a < 110> bulk silicon wafer," Jpn. J. Appl. Phys, Vol. 39, pp. 7103-7107, 2000. https://doi.org/10.1143/JJAP.39.7103
Cited by
- Electrical and Structural Properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(Zr0.52Ti0.48)O3Ceramics with CuO Content vol.51, pp.7R, 2012, https://doi.org/10.7567/JJAP.51.075802
- Electrical and structural properties of 0.98(Na0.5K0.5)NbO3-0.02LiSbO3 ceramics with ZnO content vol.60, pp.7, 2012, https://doi.org/10.3938/jkps.60.1114
- Effect of various sintering aids on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Li0.04(Sb0.06Ta0.1)O3 ceramics vol.58, 2014, https://doi.org/10.1016/j.materresbull.2014.04.057
- Ferroelectric and piezoelectric properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics with various sintering temperatures vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1068-4
- Electrical properties of lead-free (1-x)(Na0.5K0.5)NbO3-xBa(Zr0.52Ti0.48)O3ceramics vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0904-2
- Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition vol.11, pp.3, 2015, https://doi.org/10.1007/s13391-015-4419-0
- Dielectric and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 ceramics with Ag2O contents vol.8, pp.6, 2012, https://doi.org/10.1007/s13391-012-2072-4
- Effect of sintering temperatures on the piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3-0.02(Ba0.5Ca0.5)TiO3 ceramics vol.9, pp.2, 2013, https://doi.org/10.1007/s13391-012-2160-5
- Electrical properties of lead-free 0.98(Na0.5K0.5Li0.1)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics by sintering temperature vol.8, pp.3, 2012, https://doi.org/10.1007/s13391-012-2002-5
- Piezoelectric Properties of ZnO-Doped 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ta0.48)O3 Ceramics vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741865
- Electrical properties of lead-free 0.98(Na0.5K0.5Lix)NbO3-0.02Ba(Zr0.52Ti0.48)O3 ceramics vol.8, pp.1, 2012, https://doi.org/10.1007/s13391-011-1063-1
- Piezoelectric and dielectric properties of 0.98(Na0.5K0.5)NbO3–0.02Ba(ZrxTi(1−x))O3 ceramics vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.095
- Piezoelectric and dielectric properties of (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 ceramics with sintering temperature vol.7, pp.3, 2011, https://doi.org/10.1007/s13391-011-0905-1
- Electrical properties of lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 piezoelectric ceramics by optimizing sintering temperature vol.7, pp.1, 2012, https://doi.org/10.1186/1556-276X-7-15