DOI QR코드

DOI QR Code

Comparison of Chemicophysics Properties of the Detonation Monocrystalline and Synthetic Polycrystalline Nanodiamond

폭발 단결정과 합성 다결정 나노다이아몬드의 물리화학적 특성 비교

  • Kang, Soon-Kook (Department of Environmental Engineering, Sunmoon University) ;
  • Chung, Myung-Kiu (Department of Environmental Engineering, Sunmoon University)
  • 강순국 (선문대학교 환경공학과) ;
  • 정명규 (선문대학교 환경공학과)
  • Received : 2011.09.15
  • Accepted : 2011.10.06
  • Published : 2011.10.31

Abstract

Nanodiamond is a relatively new nanomaterial with broad prospects for application. In this paper, a variety of methods were used to analyze comprehensively chemicophysics properties of the detonation monocrystalline and synthetic polycrystalline nanodiamond, XRD spectroscopy, EDS, HRTEM, FTIR, Raman spectroscopy, TGA-DTA and BET. The results show that the monocryctalline detonation nanodiamond particles are spherical or elliptical shape of 4nm ~ 6nm grain size and the polycryctalline synthetic nanodiamond particles are angular shape of 80nm ~ 120nm grain size. The surface of the monocrystalline and polycrystalline nanodiamond contain hydroxy, carbonyl, carboxyl, ether-based resin, and other functional groups. The phase transition temperature of the monocrystalline detonation nanodiamond in the $N_2$ is about $650^{\circ}C$.

나노다이아몬드는 넓은 적용성 측면을 고려한다면 상대적으로 신물질이라 할 수 있다. 본 연구에서는 XRD, EDS, HRTEM, FTIR, Raman 분광기, 열분석 장치와 BET 측정 장치와 같은 다양한 장비를 통해 단결정 폭발 나노다이아몬드와 다결정 합성 나노다이아몬드의 물리화학적 특성들을 고찰하였다. 단결정 폭발 나노다이아몬드는 4nm ~ 6nm 크기의 구형이나 타원 모양이지만, 다결정 합성 다이아몬드는 80nm ~ 120nm 크기의 각이 진 입체도형 모양이다. 단결정과 다결정 나노다이아몬드의 표면은 수산기, 카보닐기, 카복실기 등과 같은 다양한 관능기를 가지고 있다. 질소분위기 하에서 단결정 폭발 나노다이아몬드의 상전이 온도는 대략 $650^{\circ}C$이었다.

Keywords

References

  1. J. S. Park, et al, "Dispersion of nanodiamond by Chemical treatment", J. of The Korea Academia-Industrial cooperation Society, 12, pp. 999-1004, 2011. https://doi.org/10.5762/KAIS.2011.12.2.999
  2. V. L. Kuznetsov, et al., "Onion-like carbon from ultra-disperse diamond", Chem. Phys. Lett., 222, pp. 343-348, 1994. https://doi.org/10.1016/0009-2614(94)87072-1
  3. K. Yamada et al., "Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mixtures and their formation mechanism", Carbon, 32, pp. 665-673, 1994. https://doi.org/10.1016/0008-6223(94)90088-4
  4. E. Mironov, et al., "The research of detonation nanodiamond structure by optical methods", Diamond & Related Materials, 11, pp. 872-876, 2002. https://doi.org/10.1016/S0925-9635(01)00723-3
  5. E. Osawa, "Recent progress and perspectives in single-digit nanodiamond", Diamond Related & Materials, 16, 2018-2022, 2007. https://doi.org/10.1016/j.diamond.2007.08.008
  6. I. Petrov, et al., "Detonation nanodiamonds simultaneously purified and modified by gas treatment", Diamond Related & Materials, 16, pp. 2098-2102, 2007. https://doi.org/10.1016/j.diamond.2007.05.013
  7. Dean Ho, "Nanodiamonds", pp. 99-101, Spronge Science+Business Media, 2009.
  8. Q. Zou, et al., "Characterization of structures and surface states of the nanodiamond synthesized by detonation", Material Characterization, 60, pp.1257-1266, 2009. https://doi.org/10.1016/j.matchar.2009.05.008
  9. K. Ankel, et al., "Deagglomelation and functionalisation of detonation nanodiamond with long alkyl chains", Diamond Related & Materials, 17, pp. 1367-1370, 2008. https://doi.org/10.1016/j.diamond.2008.01.033
  10. O. Shenderova, et al. " Detonation nanodiamonds as UV radiation filter", Diamond Related & Materials, 16, 2003-2008, 2007. https://doi.org/10.1016/j.diamond.2007.05.010