DOI QR코드

DOI QR Code

Bending Assessment of Antisymmetric Angle-ply Composite Sandwich Plates with Various Shear Deformation Functions

전단변형함수에 따른 역대칭 앵글-플라이 복합면재를 갖는 샌드위치판의 휨거동 평가

  • Park, Weon-Tae (Department of Civil and Environment Engineering, Kongju National University) ;
  • Chun, Kyoung-Sik (Structural Eng. Division, BAU Consultant Co., Ltd.)
  • 박원태 (공주대학교 건설환경공학부) ;
  • 천경식 ((주)바우컨설탄트 구조설계부)
  • Received : 2011.08.12
  • Accepted : 2011.11.10
  • Published : 2011.11.30

Abstract

In this paper, we compared various shear deformation functions for modelling anti-symmetric composite sandwich plates discretized by a mixed finite element method based on the Lagrangian/Hermite interpolation functions. These shear deformation theories uses polynomial, trigonometric, hyperbolic and exponential functions through the thickness direction, allowing for zero transverse shear stresses at the top and bottom surfaces of the plate. All shear deformation functions are compared with other available analytical/3D elasticity solutions, As a result, reasonable accuracy for investigated problems are predicted. Particularly, The present results show that the use of exponential shear deformation theory provides very good solutions for composite sandwich plates.

본 연구에서는 Lagrangian/Hermite 보간함수를 혼합정식화한 유한요소법과 다양한 전단변형함수로 역대칭 앵글-플라이 샌드위치판 모델을 비교하였다. 제시된 전단변형함수는 판의 상하면에서 전단응력이 0이 되는 다항식, 삼각함수, 쌍곡삼각함수 및 지수함수로 구성되어 있다. 모든 전단변형함수는 해석해(Analytical solution)와 비교하였으며, 합리적인 정확도를 갖는 것으로 예측되었다. 특히, 지수형태의 전단변형함수가 복합면재를 갖는 샌드위치판 해석에 있어서 상대적으로 가장 우수한 결과를 보였다.

Keywords

References

  1. Chun KS, Hong DK and Chang SY "Zigzag Model of Laminated Composite Beams using Trigonometric Functions, KSCE, Vol 23 No 3-A, pp.421-428, 2003
  2. Chun KS, Choi HK and Chang SY "Comparative Study on Static, Buckling, and Free Vibration Analysis of Laminated Composite Plates using Various Serendipity Finite Elements", KSCE, Vol 23 No 5A, pp.901-909, 2003.
  3. Chun KS and Ji HS "A Simple Modification of the First-order Shear Deformation Theory for the Analysis of Composite Laminated Structures", KSSC, Vol. 23, NO.4, pp.475-481, 2011.
  4. Chang SY, Yoon SH and Han SC "Analysis of Anisotropic Laminated Composite Plates by means of Higher-Order Shear Deformation Theory", KSSC, Vol. 6, NO. 1, pp.125-137, 1994.
  5. Idlbi A, Karama M and Touratier M, "Comparison of various laminated plates theories", Compos Struct, Vol.37, pp.173-184, 1997. https://doi.org/10.1016/S0263-8223(97)80010-4
  6. Karama M, Afaq KS and Mistou S "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int J Solids Struct, Vol.40, pp.1525-1546, 2003. https://doi.org/10.1016/S0020-7683(02)00647-9
  7. Levinson M "An accurate simple theory of statics and dynamics of elastic plates", Mech Res Commun, Vol.7, pp.343-350, 1980. https://doi.org/10.1016/0093-6413(80)90049-X
  8. Mindlin RD "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J Appl Mech, Vol.18, pp.31-38, 1951.
  9. Murthy MVV "An improved transverse shear deformation theory for laminated anisotropic plates", NASA Technical Paper, 1981.
  10. Park WT, Son BJ, Chun KS "A Comparative Study on Static Behavior of Simply Supported Shear Deformable Anisotropic Skew Plates Considering Higher-order Shear Deformation Theory", KSCE, Vol 24 No 6A, pp.1173-1182, 2004.
  11. Pagano NJ "Exact solutions for rectangular bidirectional composites and sandwich plates", J Compos Mater, Vol.4(1), pp.20-34, 1970. https://doi.org/10.1177/002199837000400102
  12. Phan ND and Reddy JN "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J Sound Vib, Vol.98, pp.157-170, 1985. https://doi.org/10.1016/0022-460X(85)90383-9
  13. Reddy JN "A simple higher-order theory for laminated composite plates", J Appl Mech, Vol.51, pp.745-752, 1984. https://doi.org/10.1115/1.3167719
  14. Reissner E "Reflection on the theory of elastic plates", J Appl Mech, Vol.38, pp.1453-1464, 1945.
  15. Swaminathan K and Ragounadin D "Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates", Compos Struct, Vol.64, pp.405-417, 2004. https://doi.org/10.1016/j.compstruct.2003.09.042
  16. Swaminathan K, Patil SS, Nataraja MS and Mahabaleswara KS "Bending of sandwich plates with aniti-symmetric angle-ply face sheets - Analytical evaution of higher order refined computational models", Compos Struct, Vol.75, pp.114-120, 2006. https://doi.org/10.1016/j.compstruct.2006.04.007
  17. Soldatos KP "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech Vol.94, pp.195-200, 1992. https://doi.org/10.1007/BF01176650
  18. Touratier M "An efficient standard plate theory", Int J Eng Sci, Vol.29(8), pp.901-916, 1991. https://doi.org/10.1016/0020-7225(91)90165-Y
  19. Whitney JM and Pagano NJ. "Shear deformation in heterogeneous anisotropic plates", J Appl Mech, Vol.37(4), pp.1031-1036, 1970 https://doi.org/10.1115/1.3408654