DOI QR코드

DOI QR Code

Local Region Spectral Analysis for Performance Enhancement of Dementia Classification

인지증 판별 성능 향상을 위한 스펙트럼 국부 영역 분석 방법

  • Park, Jun-Qyu (Division of Electronic and Computer Engnineering, Chonnam University) ;
  • Baek, Seong-Joon (Division of Electronic and Computer Engnineering, Chonnam University)
  • 박준규 (전남대학교 전자컴퓨터공학부) ;
  • 백성준 (전남대학교 전자컴퓨터공학부)
  • Received : 2011.09.06
  • Accepted : 2011.11.10
  • Published : 2011.11.30

Abstract

Alzheimer's disease (AD) and vascular dementia (VD) are the most common dementia. In this paper, we proposed a region selection for classification of AD, VD and normal (NOR) based on micro-Raman spectra from platelet. The preprocessing step is a smoothing followed by background elimination to the original spectra. Then we applied the minmax method for normalization. After the inspection of the preprocessed spectra, we found that 725-777, 1504-1592 and 1632-1700 $cm^{-1}$ regions are the most discriminative features in AD, VD and NOR spectra. We applied the feature transformation using PCA (principal component analysis) and NMF (nonnegative matrix factorization). The classification result of MAP(maximum a posteriori probability) involving 327 spectra transformed features using proposed local region showed about 92.8 % true classification average rate.

인지증을 유발하는 원인은 알츠하이머병(Alzheimer's Disease: AD)과 혈관성 인지증(vascular Dementia: VD)이 가장 높은 비율을 차지한다. 본 논문에서는 측정된 라만 스펙트럼에서 AD, VD, 정상(NOR: normal)을 분류하기 위해 변별력 있는 영역을 조사하고, 특징 변환을 이용한 분류 실험 결과를 제시하였다. 혈소판으로부터 측정한 라만 스펙트럼은 먼저 smoothing을 적용한 다음 배경 잡음을 제거하고 스펙트럼의 기준 피크를 중심으로 그 위치를 정렬하였고 minmax 방법을 사용하여 정규화 하였다. 전처리를 거친 스펙트럼은 AD와 VD, NOR를 변별하기 가장 용이한 영역을 결정하기 위해 조사되었으며, 그 결과 725-777, 1504-1592, 1632-1700 $cm^{-1}$ 영역에서 스펙트럼이 많은 차이를 보임을 확인하였다. 분류 실험은 선택한 각 영역에 대하여 PCA(principal component analysis)와 NMF(nonnegative matrix factorization) 방법을 적용하여 얻은 특징을 이용하여 행하였다. 총 327개의 라만 스펙트럼에 대한 MAP(maximum a posteriori probability) 분류 실험 결과에 따르면, 본 연구에서 제안된 국부 영역 변환 특징을 사용했을 때 평균 92.8 %의 분류율을 보임을 알 수 있었다.

Keywords

References

  1. I. S. Park, C. J. Lee, H. Y. Lee, E. J. Han, S. R. Seo, "2010 Health insurance statistical analysis information package," NATIONAL HEALTH INSURANCE Health Insurance Policy Institute, pp. 165-175, Feb. 2010.
  2. P. Tiraboschi, L. Hansen, L. Thai and J. Corey-Bloom, "The importance of neuritic plaques and tangles to the development and evolution of AD," Neurology, Vol. 62, No. 11, pp. 1984-1989, Jun. 2004. https://doi.org/10.1212/01.WNL.0000129697.01779.0A
  3. E. B. Hanlon, R. Manoharan, et al., "Prospect for in vivo Raman spectroscopy," Physics Medicine Biology, Vol. 45, R39-R44, 2000. https://doi.org/10.1088/0031-9155/45/9/102
  4. K. Tang, L. S. hynan, F. Baskin and R. N. Rosenberg, "Platelet amyloid precursor protein processing: A bio-marker for Alzheimer's disease," Journal of the neurological sciences, Vol. 240, pp. 53-58, 2006. https://doi.org/10.1016/j.jns.2005.09.002
  5. Z. W. Cai, F. Xiao, B. Lee, I. A. Paul and P. G. Rhodes, "Prenatal hypoxia-ischemia alters expression activity of nitric oxide synthase in the young rat brain and causes learning deficits," Brain Research Bulletin, Vol. 49, pp. 359-365, 1999. https://doi.org/10.1016/S0361-9230(99)00076-3
  6. J.-W. Ni, H. Ohta, K. Matsumoto and H. Wantanabe, "Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats," Brain Research, Vol. 653, no. 1-2, pp. 231-236, Aug. 1994. https://doi.org/10.1016/0006-8993(94)90394-8
  7. A. Savitzky and M. J. E. Golay, "Smoothing and Differentiation of Data by Simplified Least Squares Procedures," Analytical Chemistry, Vol. 36, pp. 1627- 1639, 1964. https://doi.org/10.1021/ac60214a047
  8. Z. Jianhua, L. Harvey, M. David and Z. Haishan, "Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy," Society for Applied Spectroscopy, Vol. 61, pp. 248A-270A, Nov. 2007. https://doi.org/10.1366/000370207782597049
  9. S. J. Baek, A. Park, J. Kim, A. Shen, and J. Hu, "A background elimination method based on linear programming for Raman spectra," Chemometrics and Intelligent Laboratory Systems, Vol. 98, no. 1, pp. 24-30, May 2009. https://doi.org/10.1016/j.chemolab.2009.04.007
  10. J. Lampinen, E. Oja, "Distortion Tolerant Pattern Recognition Based on Self-Organizing Feature Extraction," IEEE Transactions On Neural Networks, Vol. 6, no. 3, pp. 539-547, May 1995. https://doi.org/10.1109/72.377961
  11. I. T. Jolloffe, Principal Component Analysis 2nd Edition, Springer, 2002.
  12. J. R. Beattie, S. Brockbank, J. J. McGarvey, and W. J. Curry, "Effect of excitation wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area centralis," Molecular Vision, Vol. 11, pp. 825-832, 2005.
  13. Z. Huang, A. Mcwilliams, H. Lui, D. I. Mclean, S. Lam, and H. Zeng, "Near-infrared Raman Spectroscory for Optical Diagnosis of Lung Cancer," International Journal of Cancer, Vol. 107, pp. 1047-1052, 2003. https://doi.org/10.1002/ijc.11500
  14. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification Second Edition, Jone Wiley & Son, Inc. 2001.