DOI QR코드

DOI QR Code

4D-QSAR Study of p56Ick Protein Tyrosine Kinase Inhibitory Activity of Flavonoid Derivatives Using MCET Method

  • Yilmaz, Hayriye (Erciyes University, Faculty of Pharmacy) ;
  • Guzel, Yahya (Erciyes University, Faculty of Science, Department of Chemistry) ;
  • Onal, Zulbiye (Erciyes University, Faculty of Science, Department of Chemistry) ;
  • Altiparmak, Gokce (Erciyes University, Faculty of Science, Department of Chemistry) ;
  • Kocakaya, Safak Ozhan (University of Dicle, Faculty of Science, Department of Chemistry)
  • Received : 2011.07.27
  • Accepted : 2011.10.17
  • Published : 2011.12.20

Abstract

A four dimensional quantitative structure activity relationship analysis was applied to a series of 50 flavonoid inhibitors of $p56^{lck}$ protein tyrosine kinase by the molecular comparative electron topological method. It was found that the -log (IC50) values of the compounds were highly dependent on the topology, size and electrostatic character of the substituents at seven positions of the flavonoid scaffold in this study. Depending on the negative or positive charge of the groups correctly embedded in these substituents, three-dimensional bio-structure to increase or decrease -log (IC50) values in the training set of 39 compounds was predicted. The test set of 11 compounds was used to evaluate the predictivity of the model. To generate 4D-QSAR model, the defined function groups and pharmacophore used as topological descriptors in the calculation of activity were of sufficient statistical quality ($R^2$ = 0.72 and $Q^2$ = 0.69). Ligand docking approach by using Dock 6.0. These compounds include many flavonoid analogs, They were docked onto human families of p56lck PTKs retrieved from the Protein Data Bank, 1lkl.pdb.

Keywords

References

  1. Cohen, P. Nature Reviews Drug Discovery 1 2002; p 309.
  2. Manning, G.; Whyte, D. B.; Martinez, R.; Hunter T.; Sudarsanam, S. Science 6 2002, 298, 1912. https://doi.org/10.1126/science.1075762
  3. Dancey, J.; Sausville, E. A. Nature Reviews in Drug Discovery and Development 2003, 2, 296. https://doi.org/10.1038/nrd1066
  4. Adams, J. L.; Badger, A. M.; Kumar, S.; Lee, J. C. Prog. Med. Chem. 2001, 38, 1. https://doi.org/10.1016/S0079-6468(08)70091-2
  5. Weil, R.; Veillette, A. Current Topics Micro. Immunol. 1996, 205, 63. https://doi.org/10.1007/978-3-642-79798-9_4
  6. Anderson, S. J.; Levin, S. D.; Perlmutter, R. M. Adv. Immunol. 1994, 56, 151. https://doi.org/10.1016/S0065-2776(08)60451-4
  7. Fasihsi, A.; Sabet, R. Int. J. Mol. Sci. 2008, 9, 1876. https://doi.org/10.3390/ijms9091876
  8. Cushman, M.; Nagarathnam, D.; Burg, D. L.; Geahlen, R. L. J. Med. Chem. 1991, 34, 798. https://doi.org/10.1021/jm00106a047
  9. Cushman, M.; Zhu, H.; Geahlen, R. L.; Kraker, A. J. J. Med. Chem. 1994, 37, 3353. https://doi.org/10.1021/jm00046a020
  10. Novic, M.; Nikolovska-Coleska, Z.; Solmajer, T. J. Chem. Inf. Comput. Sci. 1997, 37, 990. https://doi.org/10.1021/ci970222p
  11. Prasanna1, S.; Doerksen, R. J. Current Medicinal Chemistry 2009, 16, 21. https://doi.org/10.2174/092986709787002817
  12. Cheng, Z.; Zhang, Y.; Zhang, W. Med. Chem. Res. 2009, 16, 2479.
  13. Kubinyi, H. Ed.ESCOM Science Publishers, Leiden, The Netherlands, 1993.
  14. Gren, S. M.; Marshall, G. R. Trends Pharmacol. Sci. 1995, 16, 285. https://doi.org/10.1016/S0165-6147(00)89052-5
  15. Hopfinger, A. J.; Tokarski, J. S., Charifson, P. S. Ed. Marcel Dekker: New York, 1997, p 106.
  16. Crame, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959. https://doi.org/10.1021/ja00226a005
  17. Hopfinger, A. J.; Wang S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C. J. Am. Chem. Soc. 1997, 119, 10509. https://doi.org/10.1021/ja9718937
  18. Hopfinger, A. J.; Burke, B. J.; Dunn, W. J. J. Med. Chem. 1994, 37, 3768. https://doi.org/10.1021/jm00048a013
  19. SPARTAN '08 for Windows; Wavefunction, Inc.: Irvine, CA, USA, 2008.
  20. Guzel, Y.; Ozturk, E. Bioorganic & Medicinal Chem. 2003, 11, 4383. https://doi.org/10.1016/S0968-0896(03)00461-9
  21. Bersuker, I. B.; Dimoglo, A. S. Reviews in Computational Chemistry, Lipkowitz, K. B., Boyd, D. B., Eds; VCH: New-York, 1991.
  22. Dimoglo, A. S.; Beda, A. A.; Shvets, N. M.; Gorbachov, M. Y.; Kheifits, L. A; Aulchenko, I. S. New. J. Chem. 1995, 19, 149.
  23. Dimoglo, A. S.; Gorbachov, M. Y.; Bersuker, I. B.; Greni, A. I.; Vysotskaya, L. E.; Stepanova, O. V.; Lukash, E. Yu. Die Nahrung 1988, 32, 461. https://doi.org/10.1002/food.19880320510
  24. Guzel, Y. J. Molecular Structure 1996, 366, 131. https://doi.org/10.1016/0166-1280(96)04514-9
  25. Bersuker, I. B.; Bahçeci, S.; Boggs, J. E.; Pearlman, R. S. SAR and QSAR in Env. 1999, 10, 157. https://doi.org/10.1080/10629369908039174
  26. Bersuker, I. B.; Bahceci, S.; Boggs, J. E.; Pearlman, R. S. J. Comput.-Aided Mol. Des. 1999, 13, 419. https://doi.org/10.1023/A:1008052914704
  27. Tjalling, J. Y. SIAM Review 1995, 37, 531. https://doi.org/10.1137/1037125
  28. Melanie, M. MIT Press, London. 1999.
  29. Cho, D. H.; Lee, S. K.; Kim, B. T.; No, K. T. Bull. Korean Chem. Soc. 2001, 22, 388.
  30. Hoskuldsson, A. J. Chemometrics 1988, 2, 211. https://doi.org/10.1002/cem.1180020306
  31. Efron, B. J. Am. Stat. Assoc. 1983, 78, 316. https://doi.org/10.2307/2288636
  32. Lang, P. T.; Moustakas, D.; Brozell, S.; Carrascal, N.; Mukherjee, S.; Pegg, S.; Raha, K.; Shivakumar, D.; Rizzo, R.; Case, D.; Shoichet, B.; Kuntz, I. 2007. DOCK 6.1, University of California, San Francisco. http://dock.compbio.ucsf.edu/
  33. Case, D. A.; Cheatham III, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A. Jr.; Simmerling, C.; Wang, B.; Woods, R. The Amber biomolecular simulation programs. J. Computat. Chem. 2005, 26, 1668. https://doi.org/10.1002/jcc.20290
  34. Lee, M. R.; Duan, Y.; Kollman, P. A. Proteins: Struct. Funct., Genet. 2000, 39, 309. https://doi.org/10.1002/(SICI)1097-0134(20000601)39:4<309::AID-PROT40>3.0.CO;2-S
  35. Srinavasan, J.; Cheatham, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A. J. Am. Chem. Soc. 1998, 120, 9401. https://doi.org/10.1021/ja981844+

Cited by

  1. Application of ligand- and receptor-based approaches for prediction of the HIV-RT inhibitory activity of fullerene derivatives vol.18, pp.5, 2016, https://doi.org/10.1007/s11051-016-3429-7
  2. Peptic Ulcer Model Induced by Aspirin vol.299, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/299/1/012018