DOI QR코드

DOI QR Code

Red-Orange Emissive Cyclometalated Neutral Iridium(III) Complexes and Hydridoiridium(III) Complex Based on 2-Phenylquinoxaline : Structure, Photophysics and Reactivity of Acetylacetone Towards Cyclometalated Iridium Dimer

  • Sengottuvelan, Nallathambi (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Yun, Seong-Jae (Department of Chemistry, Pusan National University) ;
  • Kang, Sung-Kwon (Department of Chemistry, Chungnam National University) ;
  • Kim, Young-Inn (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University)
  • Received : 2011.03.15
  • Accepted : 2011.10.14
  • Published : 2011.12.20

Abstract

A new series of heteroleptic cyclometalated iridium(III) complexes has been synthesized and characterized by absorption, emission and cyclic voltammetry studies: $(pqx)_2Ir(acac)$ (1), $(dmpqx)_2Ir(acac)$ (2) and $(dfpqx)_2Ir(acac)$ (3) where pqx=2-phenylquinoxalinate, dmpqx=2-(2,4-dimethoxyphenyl)quinoxalinate, dfpqx=2-(2,4-difluorophenyl) quinoxalinate and acac=acetylacetonate anion. The reaction of excess acetylacetone with ${\mu}$-chloride-bridged dimeric iridium complex, $[(C\^N)_2Ir({\mu}-Cl)]_2$, gives a complex 1 and an unusual hydridoiridium(III) complex, $(pqx)IrH(acac)_2$ (4). The complex 1, 2 and 3 show their emissions in an orangered region (${\lambda}_{PL,max}$ = 583-616 nm), and the emission maxima can be tuned by the change of substituent at phenyl ring of 2-phenylquinoxaline ligand. The phosphorescent line shape indicates that the emissions originate predominantly from $^3MLCT$ states with little admixture of ligand-based $^3({\pi}-{\pi}^*)$ excited states. The structures of complex 3 and 4 are additionally characterized by a single crystal X-ray diffraction method. The complex 3 shows a distorted octahedral geometry around iridium(III) metal ion. A strong trans influence of the phenyl ring is examined. In complex 4, there are two discrete molecules which are mirror images each other at the ratio of 1:1 in an unit cell. We propose that the phosphorescent complex 1, 2 and 3 are possible candidates for the phosphors in OLEDs applications.

Keywords

References

  1. Mkhalid, I. A. T.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890. https://doi.org/10.1021/cr900206p
  2. Kanzelberger, M.; Singh, B.; Czerw, M.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2000, 122, 11017. https://doi.org/10.1021/ja001626s
  3. Morales-Morales, D.; Lee, D. W.; Wang, Z. H.; Jensen, C. M. Organometallics 2001, 20, 1144. https://doi.org/10.1021/om000940s
  4. Jensen, C. M. Chem. Commun. 1999, 2443.
  5. Morales- Morales, D.; Redon, R.; Wang, Z. H.; Lee, D. W.; Yung, C.; Magnuson, K.; Jensen, C. M. Can. J. Chem. 2001, 79, 823.
  6. Gu, X. Q.; Chen, W.; Morales-Morales, D.; Jensen, C. M. J. Mol. Catal. A: Chem. 2002, 189, 119. https://doi.org/10.1016/S1381-1169(02)00200-5
  7. Zhang, X.; Fried, A.; Knapp, S.; Goldman, A. S. Chem. Commun. 2003, 16, 2060.
  8. Coppo, P.; Plummer, E. A.; De Cola, L. Chem. Commun. 2004, 1774.
  9. Holder, E.; Langeveld, B. M. W.; Schubert, U. S. Adv. Mater. 2005, 17, 1109. https://doi.org/10.1002/adma.200400284
  10. Forrest, S. R.; Bradley, D. D. C.; Thompson, M. E. Adv. Mater. 2003, 15, 1043. https://doi.org/10.1002/adma.200302151
  11. Dixon, I. M.; Collin, J. P.; Sauvage, J. P.; Flamigni, L.; Encinas, S.; Barigelletti, F. Chem. Soc. Rev. 2000, 29, 385. https://doi.org/10.1039/b000704h
  12. Song, M.; Park, J. S.; Yoon, M.; Kim, A. J.; Kim, Y.-I.; Gal, Y.-S.; Lee, J. W.; Jin, S.-H. J. Organomet. Chem. 2011, 696, 2122. https://doi.org/10.1016/j.jorganchem.2010.11.016
  13. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151. https://doi.org/10.1038/25954
  14. Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. https://doi.org/10.1063/1.124258
  15. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl. Phys. 2001, 90, 5048. https://doi.org/10.1063/1.1409582
  16. Sengottuvelan, N.; Seo, H.-J.; Kang, S. K.; Kim, Y.-I. Bull. Korean Chem. Soc. 2010, 31, 2309. https://doi.org/10.5012/bkcs.2010.31.8.2309
  17. Schneidenbach, D.; Ammermann, S.; Debeaux, M.; Freund, A.; Zollner, M.; Daniliuc, C.; Jones, P. G.; Kowalsky, W.; Johannes, H.-H. Inorg. Chem. 2010, 49, 397. https://doi.org/10.1021/ic9009898
  18. Ma, A.-F.; Seo, H.-J.; Jin, S.-H.; Yoon, U. C.; Hyun, M. H.; Kang, S. K.; Kim, Y.-I. Bull. Korean Chem. Soc. 2009, 30, 2754. https://doi.org/10.5012/bkcs.2009.30.11.2754
  19. Nonoyama, M. Bull. Chem. Soc. Jpn. 1974, 47, 767. https://doi.org/10.1246/bcsj.47.767
  20. Sheldrick G. M. Acta Cryst. 2008, A64, 112.
  21. Schaul, T.; Diskin-Posner, Y.; Radius, U.; Milstein, D. Inorg. Chem. 2008, 47, 6502. https://doi.org/10.1021/ic800354q
  22. Graces, F. O.; King, K. A.; Watts, R. J. Inorg. Chem. 1988, 27, 3464. https://doi.org/10.1021/ic00293a008
  23. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.; Adachi, C.; Burrows, P. E.; . Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  24. Allen, F. H.; Davies, J. E.; Galloy, J. J.; Johnson, O.; Kennard, O.; Macrae, C. F.; Mitchell, E. M.; Mitchell, G. F.; Smith, J. M.; Watson, D. G. J. Chem. Inf. Comput. Sci. 1991, 31, 187. https://doi.org/10.1021/ci00002a004
  25. Rauchfuss, T. B. J. Am. Chem. Soc. 1979, 101, 1045. https://doi.org/10.1021/ja00498a049
  26. El Mail, R.; Garralda, M. A.; Hernandez, R.; Ibarlucea, L. J. Organomet. Chem. 2002, 648, 149. https://doi.org/10.1016/S0022-328X(01)01381-X
  27. Garralda, M. A.; Hernández, R.; Ibarlucea, L.; Pinilla, E.; Rosario, M. Organometallics 2003, 22, 3600. https://doi.org/10.1021/om0301278
  28. Balton, C. B.: Murtaza, Z.; Shavez, R. J.; Rillema, D. P. Inorg. Chem. 1992, 31, 3230. https://doi.org/10.1021/ic00041a012
  29. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  30. Ge, G.; Zhang, G.; Guo, H.; Chuai, Y.; Zou, D. Inorg. Chim. Acta 2009, 362, 2231. https://doi.org/10.1016/j.ica.2008.10.001
  31. Nazeeruddin, Md. K.; Humphry-Baker, R.; Berner, D.; River, S.; Zuppiroli, L.; Graetzel, M. J. Am. Chem. Soc. 2003, 125, 8790. https://doi.org/10.1021/ja021413y

Cited by

  1. ′]iridium(III) vol.69, pp.8, 2013, https://doi.org/10.1107/S1600536813018394
  2. Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.167
  3. Phosphorescent Chemosensor Based on Iridium(III) Complex for the Selective Detection of Cu(II) Ion in Aqueous Acetonitrile vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.653
  4. Polysubstituted Ligand Framework for Color Tuning Phosphorescent Iridium(III) Complexes vol.60, pp.20, 2011, https://doi.org/10.1021/acs.inorgchem.1c02121