Physicochemical and Biological Properties of Constructed Small-scale Ponds for Ecological Improvement in Paddy Fields

논 생태 증진을 위해 설치된 둠벙의 물리.화학적 및 생물학적 특성

  • Kim, Jae-Ok (Rural Research Institute Korea Rural Community Corporation) ;
  • Shin, Hyun-Sang (Rural Research Institute Korea Rural Community Corporation) ;
  • Yoo, Ji-Hyun (Rural Research Institute Korea Rural Community Corporation) ;
  • Lee, Seung-Heon (Rural Research Institute Korea Rural Community Corporation) ;
  • Jang, Kyu-Sang (Rural Research Institute Korea Rural Community Corporation) ;
  • Kim, Bom-Chul (Department of Environmental Science, Kangwon National University)
  • 김재옥 (한국농어촌공사 농어촌연구원) ;
  • 신현상 (한국농어촌공사 농어촌연구원) ;
  • 유지현 (한국농어촌공사 농어촌연구원) ;
  • 이승헌 (한국농어촌공사 농어촌연구원) ;
  • 장규상 (한국농어촌공사 농어촌연구원) ;
  • 김범철 (강원대학교 환경과학과)
  • Received : 2011.06.05
  • Accepted : 2011.09.21
  • Published : 2011.09.30

Abstract

This study was conducted to gain preliminary data for restoration and management of constructed small-scale ponds in paddy fields through analysis of their physicochemical and biological properties. A field survey was performed at 13 small-scale ponds located in paddy fields from August 2009 to October 2010. Structural properties, water quality, soil characteristics and fish fauna were measured. Results showed that small-scale ponds without frames might lose their function over time because of crumbling walls. Therefore, it is necessary for these ponds to have frames for soil protection and sustainable maintenance. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) concentration were higher than the water quality standard for agricultural water in small-scale ponds. In particular, TN concentration was 8.03 mg $L^{-1}$ and over 8 times the water quality standard because of the presence of livestock such as cows and pigs in the study areas. Sand, organic matter and available phosphorus contents of soil in small-scale ponds was 53.4${\pm}$16.6%, 21.8${\pm}$9.74 g $kg^{-1}$ and 12.8${\pm}$7.59 mg $kg^{-1}$, respectively indicating that sand and available phosphorus contents were suitable for plants in small-scale ponds, but organic matter contents was somewhat low in newly constructed small-scale ponds, and would take some time to stabilize for plant growing. Fish fauna was not diverse with only 4 species at all sites surveyed. Collected fishes share a common feature that they all inhabit paddy fields or canals with shallow water depth. In this study, all ponds were not linked to the streams and canals around them. It appears that connection to adjacent streams was the major factor controlling fish fauna in small-scale ponds. The results of statistical analysis were classified into three groups. Factor 1 was 26.3%, which shows a structural properties such as area and depth of small-scale pond. As for factor 2, it appears on 20.1%, showing water quality like a TP, suspended solids (SS) and COD. Small-scale ponds were classified into three groups by factor scores. Group I consisted of 6 small-scale ponds, which were larger than the others. Group III had higher water quality than the others. We conclude that the most important points to be considered for restoration and management of small-scale ponds is connection with adjacent streams or ditches and depth and size of the small-scale pond.

본 연구는 인공 조성된 둠벙의 물리 화학적 및 생물학적 특성을 분석하여 둠벙의 복원 및 관리를 위한 기초 자료를 얻고자 수행한 연구로 다음과 같은 결론을 도출하였다. 연구대상지 둠벙의 면적은 4.6~14.1 $m^2$였으며 모양은 원형과 사각형 모양이 대부분이었다. 조사 둠벙 중 가장 자리에 석축이나 목축을 두르지 않은 둠벙들은 주변 둑이 매몰되어 수심이 얕아져 둠벙의 기능을 잃을 수 있다. 따라서 지속적인 둠벙 기능 유지를 위해서는 주변에 석축이나 목축 등을 둘러 매몰되는 것을 방지할 필요가 있다. 연구대상지의 수질환경은 COD, TN, TP의 경우 농업용수 기준을 초과한 수질등급을 보였으며 특히 TN의 농도는 평균 8.03 mg $L-1$로 농업용수 수질기준을 약 8.0배를 초과하는 농도분포를 보였다. 조사지역 둠벙의 질소농도가 높은 원인으로는 홍성지역의 높은 축산 밀도, 농경지 주변 산재해 있는 축사 시설과 축산폐수를 이용한 저장 액비 사용에 의한 것으로 판단된다. 오히려 농촌지역에서 둠벙과 같은 작은 저류지가 하천으로 유출되는 영양물질을 저감시켜 주는 소규모 침전지 역할도 할 수 있을 것으로 사료된다. 연구대상지 둠벙의 평균적인 모래함량, 유기물 함량, 유효인산 함량은 각각 53.4${\pm}$16.6%, 21.8${\pm}$9.74 g $kg^{-1}$, 12.8${\pm}$7.59 mg $kg^{-1}$로 나타났다. 둠벙의 토양 특성 조사결과 모래함량과 유효인산 농도는 둠벙 안정화를 위한 식생정착에 적합한 농도분포였으나 신규로 조성된 5곳의 둠벙에서는 유기물 함량이 높지 않아 식생 정착에 다소 시간이 소요될 것으로 판단된다. 연구 대상지 둠벙의 어류상은 붕어, 미꾸리, 미꾸라지, 드렁허리 4종이 출현하였으며 군집구조 분석결과 군집 안정도와 다양도 지수가 불량하게 나타났다. 이와 같이 단순한 어류상 구조는 둠벙이 주변 하천과 고립된 구조를 가지고 있기 때문에 논과 정수지역, 농수로 등 연중 수위와 환경변화가 큰 환경에 적응한 어종들만이 서식할 수 있기 때문으로 판단된다. 요인분석에서 도출된 요인점수(Facter score)를 바탕으로 조사한 둠벙을 구분한 결과, 요인점수 1에서 양의 값을 보이는 둠벙은 다른 둠벙에 비해 둠벙의 크기가 큰 것들로 구성되었으며 (Group I), 요인점수 2에서 양의 값을 보인 Group III은 다른 둠벙에 비해 유기물 농도가 높은 둠벙들로(S5, S6) 구성되었다(Fig. 4). 본 연구를 바탕으로 향후 농촌지역 둠벙의 복원 및 효율적 관리를 위해서는 둠벙과 주변하천과의 연계성, 둠벙의 크기를 비롯한 구조적 특성을 잘 고려해야 할 것으로 판단된다. 본 연구에서 거론하지 못한 둠벙 용수의 유 출입량, 둠벙 수체내 먹이 연쇄 구조 등 세부적인 부분에 대한 연구를 추가적으로 진행해야 할 것으로 판단된다.

Keywords

References

  1. Admiraal, A.N., M.J. Morris, T.C. Brooks, J.W. Olson and M.V. Miller. 1997. Illinois wetland restoration & Creation guide. p. 124-129. Natural History survey. press, Illinois.
  2. APHA, AWWA and WPCF. 1999. Standard methods for the examination of water and wastewater, 20th edition, New York, USA.
  3. Bae, J.J., Y.S. Choo and S.D. Song. 2003. The patterns of inorganic cations, nitrogen and phosphorus of plants in Moojuchi Moor on Mt. Jeongjok. Korean Journal of Ecology 3: 109-114.
  4. Cho, K.H., S.K. Park and J.H. Kim. 1994. Reactions of macrophytes on sediment and water in the littoral zone of Lake Paltangho. Korean J. Limnol 1: 56-67.
  5. Ham, J.H., C.G. Yoon, H.C. Kim, W.S. Koo and H.B. Shin. 2005. The effect of plant coverage on the constructed wetlands performance and development and management of Macrophyte communities. Korean J. Limnol. 3: 393-402.
  6. Han, J.H. 2005. Prevention and treatment of fish disease. Fish Farming21 4: 78-89.
  7. Han, M.S., H.S. Bang, M.H. Kim, K.K. Kang, M.P. Jung and D.B. Lee. 2010. Distribution characteristics of water Scavenger Beetles (Hydropholidae) in Korea paddy field. Korea J. Environ. Agric. 4: 427-433.
  8. Harding, J.S., D.A. Norton and A.R. McIntosh. 2007. Persistence of a significant population of rare Canterbury mudfish (Neochanna burrowsius) in ahydrologically isolated catchment. New Zea J. of Marine and Freshwater Res. 41: 309-316. https://doi.org/10.1080/00288330709509918
  9. Hata, K. 2002. Perspectives for fish protection in Japanese paddy field irrigation systems. Japan Agricultural Research Quarterly (JARQ) 4: 211-218.
  10. Hur, J.W., J.W. Park and J.G. Kim. 2010. The fish fauna and community of Chogang Stream, Korea. Korean J. Limnol. 2: 271-278.
  11. Katano, O., K. Hosoya, K. Iguchi and Y. Aonuma. 2001. Comparison of fish fauna among three types of rice fields in the Chikuma River basin. Japan. Japan. J. Ichthyol. 1: 19-25.
  12. Kim, H.S., S.J. Hwang and D.S. Kong. 2008. Growth kinetics of phytoplankton in shallow eutrophic reservoir. Korean Society on Water Quality 5: 550-555.
  13. Kim, I.S., Y. Choi, C.L. Lee, Y.J. Lee, B.J. Kim and J.H. Kim. 2005. Illustrated Book of Korean Fishes. Kyo-Hak Sa. p. 141.
  14. Kim, J.G. 2006. The evaluation of water quality in coastal sea of Incheon using a multivariate analysis. J. of the Environmental Sciences 11: 1017-1025.
  15. Kim, J.O., H.S. Shin, J.H. Yoo, S.H. Lee, K.S. Jang and B.C. Kim. 2011. Functional evaluation of Small-scale pond at paddy field as a shelter for mudfish during midsummer drainage period. Korea J. Environ. Agric. 1: 37-42.
  16. Kim, M.A., J.K. Lee and K.D. Zoh. 2007. Evaluation of the Geum River by multivariate analysis: Principal component analysis and Factor analysis. J. of Korean Society on Water Quality 1: 161-168.
  17. K-water. 1997. Landscape architecture design criteria, p. 18-216.
  18. Lee, D.W. 2004. Ecological signification for landscape of tradition village, Seoul Nat. Univ. Press, Seoul. p. 23-25.
  19. Lee, H.S., S.W. Jung, J.K. Choi and S.I. Shin. 2008. Evaluation of trophic state of a small-scale pond (Wonheung) in ecological park. J. of Korean Society on Water Quality 6: 741-749.
  20. Lee, Y.S. and G.M. Sung. 2000. A study on the treatment of livestock waste water using Bacillus spp. J. of the Korea Society for Environmental Analysis 4: 239-243.
  21. Margalef, R. 1968. Information theory in ecology. Gen. Syst. 3: 36-71.
  22. McComas, S. 2003. Lake and Pond Management. U.S.A. p. 286.
  23. NAAS. 2000. Analysis method of soil and plant. National Inst. of Agr. Sci. & Teck. RDA, Suwon, Korea.
  24. Oh, M.K. and J.Y. Park. 2009. Seasonal variation of skin structure in a ricefield-dwelling mud loach Misgurnus mizolepis (Cobitidae) from Korea. Korean J. of Ichthyol. 2: 87-92.
  25. Pielou, E.C. 1975. Ecological diversity. Wiley, New York, p. 165.
  26. RDA. 2003. Effects of soil conservation practices at upland of hillside on soil erosion. p. 85-135.
  27. RDA. 2008. Illustration of aquatic invertebrates in paddy fields ecosystems. p. 11-21.
  28. Saitoh, K., O. Katano and A. Koizumi. 1988. Movement and spawning of several freshwater fishes in temporary waters around paddy fields. Japanese Jour. of Ecology 1: 35-47.
  29. Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688. https://doi.org/10.1038/163688a0
  30. Son, J.K., B.H. Kang and N.C. Kim. 2010. The analysis of water and soil environment at farm pond depression. J. Korean Env. Res. Tech. 3: 46-62.
  31. Suzuki, M., M. Mizutani and A. Goto. 2004. Effects of connection of paddy fields, ditch and stream through smallscale fishways on fish fauna. Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering 6: 641-651.