DOI QR코드

DOI QR Code

대각행렬화된 근사 인수분해 기법을 이용한 3차원 비압축성 점성 흐름 해석

Diagonalized Approximate Factorization Method for 3D Incompressible Viscous Flows

  • 백중철 (강릉원주대학교 공과대학 토목공학과)
  • 투고 : 2011.02.07
  • 심사 : 2011.03.11
  • 발행 : 2011.06.30

초록

비압축성 점성 흐름을 수치해석하기 위한 효율적인 대각행렬화된 근사 인수분해(DAF) 알고리즘을 개발하였다. 압력에 근거한 인공압축성(AC) 기법을 이용하여 3차원 정상 비압축성 Navier-Stokes 방정식을 계산한다. AC 형태로 변형된 지배방정식은 2차 정확도의 유한차분법을 이용하여 공간에 대해서 이산화하였다. 이산화된 방정식계를 2차 정확도로 분할하기 위해서 본 연구에서 개발한 DAF 기법을 적용한다. 이 연구의 목적은 이 DAF 기법의 계산상 효율성을 검토하는 것이다. 만곡부를 갖는 사각형 덕트에서 완전히 발달한 층류 흐름과 발달하는 층류흐름 그리고 공동에서의 층류흐름에 대한 DAF 기법의 해석결과를 잘 알려진 4단계 Runge-Kutta(RK4)기법에 의한 해석해와 상대적으로 비교평가 하였다. 공간에 대해서 동일한 이산화기법을 이용하므로 동일한 격자상에서 계산된 DAF기법과 RK4기법의 해는 근본적으로 동일한 반면에, 이들 두기법의 계산상 효율성은 확연히 다른 것으로 나타났다. 본 연구에서 개발된 DAF기법은 적용한 모든 흐름 문제에 대해서 RK4기법에 비해 최소 2배 이상 적은 계산 시간만을 필요로 하는 것으로 나타났다. 이러한 DAF 기법의 계산상 효율성은 계산용량의 추가나 프로그래밍의 추가적인 복잡함이 없이 확보된다.

An efficient diagonalized approximate factorization algorithm (DAF) is developed for the solution of three-dimensional incompressible viscous flows. The pressure-based, artificial compressibility (AC) method is used for calculating steady incompressible Navier-Stokes equations. The AC form of the governing equations is discretized in space using a second-order-accurate finite volume method. The present DAF method is applied to derive a second-order accurate splitting of the discrete system of equations. The primary objective of this study is to investigate the computational efficiency of the present DAF method. The solutions of the DAF method are evaluated relative to those of well-known four-stage Runge-Kutta (RK4) method for fully developed and developing laminar flows in curved square ducts and a laminar flow in a cavity. While converged solutions obtained by DAF and RK4 methods on the same computational meshes are essentially identical because of employing the same discrete schemes in space, both algorithms shows significant discrepancy in the computing efficiency. The results reveal that the DAF method requires substantially at least two times less computational time than RK4 to solve all applied flow fields. The increase in computational efficiency of the DAF methods is achieved with no increase in computational resources and coding complexity.

키워드

참고문헌

  1. Beam, R. and Warming, R.F. (1978) An implicit scheme for the compressible Navier Stokes equations, AIAA J., Vol. 16, No. 4, pp. 393-402. https://doi.org/10.2514/3.60901
  2. Brandt, A. (1980) Multilevel adaptive computations in fluid dynamics, AIAA J. Vol. 18, No. 10, pp. 1165-1172. https://doi.org/10.2514/3.50867
  3. Briley, W.R. and McDonald, H. (2001) An overview and generalization of implicit Navier-Stokes algorithms and approximate factorization, Computer and Fluids, Vol. 30, No. 7-8, pp. 807-828. https://doi.org/10.1016/S0045-7930(01)00030-5
  4. Chorin, A. (1967) A numerical method for solving incompressible viscous flow problems. J. of Comput. Phys., Vol. 2, pp. 12-26. https://doi.org/10.1016/0021-9991(67)90037-X
  5. Dukowicz, J.K. and Dvinsky, A.S. (1992) Approximate Factorization as a high order splitting for the implicit incompressible flow equations, J.of Comput. Phys., Vol. 102, pp. 336-347. https://doi.org/10.1016/0021-9991(92)90376-A
  6. Ekaterinaris, J.A. (2004) High-order accurate numerical solutions of incompressible flows with the artificial compressibility method, Int. J. Numer. Methods Fluids, Vol. 45, No. 11, pp. 1187-1207. https://doi.org/10.1002/fld.727
  7. Govindan, T. R., Briley W. R. and McDonald, H. (1991) General three dimensional viscous primary/secondary flow analysis, AIAA J., Vol. 29, pp. 361-370. https://doi.org/10.2514/3.10587
  8. Haelterman, R., Vierendeels, J., and Van Heule, D. (2009) A generalization of the Runge-Kutta iteration, J. of Comput. Appl. Math., Vol. 224, No. 1, pp. 152-167. https://doi.org/10.1016/j.cam.2008.04.021
  9. Humphrey, J.A.C., Taylor, A.M.K., and Whitelaw, J.H. (1977) Laminar flow in a square duct of strong curvature. J. Fluid Mech., Vol. 83, pp. 509-527. https://doi.org/10.1017/S0022112077001311
  10. Jameson, A. (1986) Multigrid algorithms for compressible flow calculations, Second European Conference on Multigrid Methods, Report MAE 1743, Princeton University, NJ.
  11. Jameson, A., Schmidt, W., and Turkel, E. (1981) Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA Paper 81-1259, 1981.
  12. Khangaonkar, T., Yang, Z., Paik, J., and Sotiropoulos, F. (2008) Simulation of hydrodynamics at stratified reservoirs using a staged modeling approach. J. of Coastal Research, Vol. SI52, pp. 79-86.
  13. Lin, F.B. and Sotiropoulos, F. (1997) Assessment of artificial dissipation models for three-dimensional incompressible flow solutions. J. of Fluids Eng., Vol. 119, No. 2, pp. 331-340. https://doi.org/10.1115/1.2819138
  14. Merkle, C.L. and Tsai, P.Y.-L. (1986) Application of Runge-Kutta schemes to incompressible flows. AIAA Paper 86-0553.
  15. Paik, J., Sotiropoulos F., and Sale, M.J. (2005) Numerical simulation of swirling flow in a complex hydro-turbine draft tube using unsteady statistical turbulence models. ASCE J. of Hydraulic Eng. Vol. 131, No. 6, pp. 441-456. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(441)
  16. Paik, J., Escauriaza, C., and Sotiropoulos, F. (2010) Coherent structure dynamics in turbulent flows past in-stream structures: some insights gained via numerical simulation, ASCE J.of Hydrau. Eng., Vol. 136, No. 12, pp. 981-993. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000089
  17. Prasad, A.K. and Koseff, J.R. (1989) Reynolds number and endwall effects on a lid-driven cavity flow, Physics of Fluids, Vol. 1, No. 2, pp. 208-218. https://doi.org/10.1063/1.857491
  18. Rogers, S., Kwak, D., and Kiris, C. (1991) Steady and unsteady solutions of the incompressible Navier-Stokes equations. AIAA J. Vol. 29, No. 4, pp. 603-610. https://doi.org/10.2514/3.10627
  19. Rogers, S. (1995) Comparison of implicit schemes for the incompressible Navier-Stokes equations. AIAA J. Vol. 33, pp. 2066-2072. https://doi.org/10.2514/3.12948
  20. Sotiropoulos, F., Kim, W.J., and Patel, V.C. (1994) A computational comparison of two incompressible Navier-Stokes solvers in three-dimensional laminar flows, Computers & Fluids, Vol. 23, No. 4, pp. 627-646. https://doi.org/10.1016/0045-7930(94)90056-6
  21. Swanson, R.C., Turkel, E., and Rossow, C.C. (2007) Convergence acceleration of Runge-Kutta schemes for solving the Navier- Stokes equations, J. of Comput. Phys., Vol. 224, No. 1, pp. 365-388. https://doi.org/10.1016/j.jcp.2007.02.028
  22. Tamamidis, P., Zhang, G., and Assanis, D.N. (1996) Comparison of pressure-based and artificial compressibility methods for solving 3D steady incompressible viscous flows. J. of Comput. Phys., Vol. 124, pp. 1-13. https://doi.org/10.1006/jcph.1996.0041
  23. Tang, H.S., Paik, J. Sotiripoulos, S., and Khangaonkar, T. (2008) Three-dimensional numerical modeling of initial mixing of thermal discharges at real-life configurations. ASCE J. of Hydraul. Eng., Vol. 134, No. 9, pp. 1210-1224. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1210)
  24. Taylor, A.M.K.P., Whitelaw, J.H., and Yianneskis, M. (1982) Curved ducts with strong secondary motion: Velocity measurements of developing laminar and turbulent flow, J. of Fluid Eng., Vol. 104, pp. 350-359. https://doi.org/10.1115/1.3241850
  25. Yang, J.Y., Yang, S.C., Chen, Y.N., and Hsu, C.A. (1998) Implicit weighted ENO schemes for three-dimensional incompressible Navier-Stokes equations. J. of Comput. Phys. Vol. 146, pp. 464-487. https://doi.org/10.1006/jcph.1998.6062
  26. White, F.M. (2005) Viscous Fluid Flow, McGraw-Hill Science, New York.