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ABSTRACT: The diffuse interface model of Saurel et al. (2008) is used for the computation of compressible cavitating flows 
around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently 
material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a 
few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the 
interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas 
dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is 
solved everywhere, with a single numerical scheme. This leads to very efficient solvers. 
The algorithm derived in Saurel et al. (2009) is used to compute cavitation pockets around solid bodies. It is first validated 
against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems 
(Shkval-like missile). Performance data are then computed showing method ability to predict forces acting on the system. 
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INTRODUCTION  

 
Underwater vehicles with high velocity capabilities have 

been built in Russia, Ukraine, USA, Germany and others. 
These systems use gas devices in order to reduce drag effects 
and reach velocities of the order of 500 km/h. In these 
systems, gas is injected through orifices at the nose as well as 
through a rocket nozzle. The gas injected at nose is used to 
reduce drag, while those injected through the nozzle is used 
to achieve system’s propulsion. Natural cavitation can also be 
used to reduce drag. A schematic representation of a possible 
system is shown hereafter: 
In any case, interfaces separating fluids appear during 
underwater high speed motion. These interfaces may be a 
consequence of injected gas or gas bubbles and pocket 
growth due to liquid expansion at geometrical singularities. 

The numerical simulation of flows around hypervelocity 
underwater projectiles, in the presence of compressible 
effects and cavitation, has been addressed in a pioneer work 
by Saurel et al. (1999). The flow model used was considering 
liquid and vapour at thermodynamic equilibrium. The 
presence of non-condensable gases, such as propulsion gases 
or air, separated from the liquid by an interface was an issue. 
Indeed, the mixture equation of state was a consequence of 
the liquid-vapour phase diagram and the presence of a non-

condensable phase was a difficult extension in this frame.  
Later, Saurel and Le Metayer (2001) proposed a 

multiphase flow model able to deal with dynamic interface 
creation in cavitating systems, as well as interfaces separating 
non-condensable gases and liquids. However, mass transfer 
modelling was difficult, as the flow model was involving at 
least two velocities. Thermodynamically consistent models of 
mass transfer when both phases are compressible were not 
mature at that time. 

Le Metayer et al. (2005) proposed a method able to solve 
evaporation fronts dynamics in metastable liquid in multi-
dimensions. This method was efficient but difficult to 
implement and inappropriate for possible condensation 
effects. 

On the basis of the Kapila et al. (2001) multi-temperature 
multi-phase flow model, Saurel et al. (2008) developed 
another method to deal with phase transition and cavitation 
fronts. This model was able to deal with both condensable 
and non-condensable fluids. Thanks to the algorithm 
developed in Saurel et al. (2009) efficient resolution of this 
flow model was possible. Petitpas et al. (2009a) generalized 
the flow model to an arbitrary number of fluids and shown 
that efficient computations of flows around hypervelocity 
underwater vehicles was possible. 

In the present work we consider the approaches described 
in these last references. Indeed, among the various methods 
able to deal with interface problems, the present one has 
some advantages. 
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Fig. 1 Schematic representation of a possible underwater 
missile. 
 
Review of existing models and method 
 

The most natural way to deal with material interfaces is 
to consider a Lagrangian description. Such approach is 
efficient in solid mechanics as deformations are limited. In 
fluid mechanics, deformations are unbounded and mesh 
distortions become so large that computational failure occurs 
rapidly. Arbitrary Lagrangian Eulerian methods (ALE) 
improve their capabilities, but remain inappropriate for many 
applications. 

The topic of interfaces computation with compressible 
materials has been (and is still) very important in many 
defense applications. In the US, interface reconstruction 
methods have been widely used (Noh, 1976, Hirt and Nichols, 
1981). However, the computation of thermodynamic 
variables in mixture cells was published only long time after 
(Miller and Puckett, 1996). It is however clear that 
momentum and energy are not strictly conserved. It is also 
quite obvious that these methods are unable to deal with mass 
transfer at interfaces.  

Another class of methods deals with interfaces tracking 
(Glimm et al., 1998). These methods are difficult to code, as 
each flow topology has to be accounted for. Moreover, 
permeable interfaces with compressible effects are still an 
issue with these methods. 

More recently, level set methods became popular, in 
particular with the Ghost Fluid method of Fedkiw et al. 
(1999). These methods are attractive as the interface remain 
sharp but have difficulties with large density ratios, 
conservation respect and again with mass transfer at 
interfaces. 

All preceding approaches try to maintain the interfaces as 
sharp as possible. Oppositely, models and methods have been 
promoted since Saurel and Abgrall (1999) to consider these 
interfaces as diffuse zones. Conventional methods used in 
compressible flow dynamics consider shocks and contact 
discontinuities as diffused zones. The reason is that it is much 
more efficient to capture them rather than to track or fit them. 
This ‘capturing’ philosophy was promoted a long time ago, 
first by Von Neumann and Richtmyer (1950) with the 
artificial viscosity method and then by Godunov (1959) with 
the help of Riemann solvers.  

In our approach we follow the approach initiated by 
Godunov (both at the modeling and numerical levels) and 
extend it to hyperbolic systems with stiff relaxation effects. It 
consists in: 

 The building of hyperbolic systems thermodynamically 
compatible, in particular regarding the entropy inequality. 

 The building of numerical schemes valid at each point: 
shocks, expansions, contact discontinuities. In this aim, 
the equations have to be as far as possible under 
conservative form. In the present context, the equations 
must also be valid at interfaces and particularly preserve 
interface conditions. These conditions, when mass 
transfer is absent correspond to equal normal velocities 
and equal pressures. 
 

In the present study the following ingredients are used: 
 

 The flow model for diffuse interfaces presented in Kapila 
et al. (2001) and Saurel et al. (2008). 

 The Stiffened Gas equations of state presented in Le 
Métayer et al. (2004). 

 The numerical scheme of Saurel et al. (2009). 
 
The main advantages with this approach are: 
 

 Simplicity. The same equations are solved everywhere 
with a unique numerical scheme. 

 Extension to extra physics is possible: capillary effects 
(Perigaud and Saurel, 2005), mass transfer (Saurel et al., 
2008), combustion and detonations (Petitpas et al., 
2009b), elastic solid – fluid interfaces (Favrie et al., 2009), 
granular materials (Saurel et al., 2010). 

 Dynamic interface creation. This is the only method able 
to deal with the dynamic appearance of interfaces (not 
present initially). This is of paramount importance in the 
present application, where a flow with pure liquid is 
present initially. 
 
Last, as the gas dynamics Euler equations correspond to 

the single phase limit of these equations, single phase 
compressible flows of gases and liquids are accurately 
predicted. This is important for example for nozzle flow 
computations. 

The first part of this paper recalls the flow model. The 
numerical method is presented in the second part. Then, the 
third part is focused on validations against experiments in 
water tunnels done at CNU on various body shapes. 
Numerical simulations predict gas pocket sizes in agreement 
with experimental observations. The fourth and last part deals 
with more realistic torpedo geometries. Torpedo inclination 
effects are investigated. In each case, pressure drag and lift 
are computed. 
 
 
 
DIFFUSE INTERFACE MODEL AND PROPERTIES 
 

The flow model used in the computations is presented 
here in the context of an arbitrary number of fluids. This 
model is fully derived in Kapila et al. (2001) in the case of 
two phase flows. In the present application, three phases at 
least are necessary due to propulsion gases injected through 
the nozzle and those injected through the torpedo nose. 
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The model is able to compute interfaces and fluid 
mixtures evolving under a unique pressure and unique 
velocity. It is thus particularly well adapted to cavitation 
studies with dynamic appearances of gas pockets: 
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Each fluid is governed by its own convex equation of state 
(EOS), 
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that allows the determination of the phases’ sound speed, 
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In the particular case of fluids governed by the stiffened gas 
EOS, 
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System (1) is hyperbolic with the three wave’s speeds 

ww cuandcu,u −+ . 

where wc is the multiphase extension of the non-monotonic 

Wood (1930) sound speed: ∑ρ
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System (1) is also thermodynamically consistent as it agrees 
with the second law of thermodynamics. 
 
 
 
NUMERICAL METHOD 

 
It has been shown in Saurel et al. (2009) that System (1) 

presents inherent difficulties for its numerical resolution. To 
solve efficiently this system, another extended system is 
considered, apparently more complex. However, with the 
extended model, there is no difficulty to preserve volume 
fraction positivity. Also, the sound speed with the new model 
is monotonic with respect to volume fractions. These features 
facilitate numerical resolution. 

Nevertheless, to recover solutions of the mechanical 
equilibrium model (1), stiff pressure relaxation is used, 
preserving also volume fraction positivity. 

Therefore, the model is solved in a sequence of three 
steps: 

 
 Solve a pressure non-equilibrium flow model with 

appropriate hyperbolic solver. 
 Relax the pressure toward mechanical equilibrium. 
 Reset the internal energies. 

 
Each step is presented hereafter. 
The pressure non-equilibrium model reads:  
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Combination of the internal energy equations with mass and 
momentum equations results in the additional mixture energy 
equation:  
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This extra equation will be important during numerical 
resolution, in order to correct inaccuracies due to the 
numerical approximation of the non-conservative internal 
energy equations in the presence of shocks. 

This model exhibits a nice feature with respect to the 
mixture sound speed. Indeed the mixture sound speed,  
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has a monotonic behavior versus volume and mass fractions 
and represents the frozen mixture speed of sound. The model 
is thus hyperbolic with waves speeds: u-cf , u, u+cf,. 

System (3) is aimed to replace resolution of System (1) 
by the three steps method, mentioned previously. During the 
first step, System (3) is solved in absence of relaxation 
terms(μ=0). Then relaxation terms are considered and are 
assumed stiff. In other word, the mechanical equilibrium 
solution is obtained at the end of the second step. It can be 
proved by asymptotic analysis that such strategy yields 
precisely to solutions of System (1).  

Numerical resolution of the pressure non-equilibrium 
model in the limit of stiff pressure relaxation is then 
addressed. In regular zones, this model is self consistent. 
But in the presence of shocks the internal energy equations 
are inappropriate. To correct the thermodynamic state 
predicted by these equations in the presence of shocks, the 
total mixture energy equation is used. This correction is 
valid on both sides of an interface, when the flow tends to 
the single phase limits. The details of this correction will be 
examined further. For now, the pressure non-equilibrium 
system is augmented by a redundant equation regarding the 
total mixture energy. The system to consider during 
numerical resolution thus involves 3N+2 equations (N being 
the number of fluids):  
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We are now going to present the three steps of the numerical 
method in the context of 3D flows with an arbitrary number 
of phases. 
 
Hyperbolic solver 

 
The hyperbolic solver is used to solve system (4) in the 

absence of relaxation terms (μ=0). At each cell boundary, the 
flow is assumed locally one-dimensional. The first ingredient 
corresponds to the Riemann solver used to compute the 
fluxes that cross each cell boundary. Then the variables are 
updated with a Godunov type method. 
 
HLLC type Riemann Solver (Toro et al., 1994) 

Consider a cell boundary separating a left state (L) and a 
right state (R). The left- and right-facing wave’s speeds are 
readily obtained, following Davis (1988) estimates: 
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The intermediate wave speed (or contact discontinuity speed) 
is estimated under HLL approximation, 
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with the mixture density and mixture pressure defined 
previously.  
From these wave speeds, the following variable states are 
determined: 
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The volume fraction jump is readily obtained, as in the 
absence of relaxation effects the volume fraction is constant 
along fluid trajectories, 
 

* *
kR kR kL kL,α α α α= =  

 
As the volume fraction is constant across left- and right-
facing waves, the fluid density is determined from the 
preceding relations: 
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The transverse velocities jumps are also readily obtained, 
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Internal energy jumps are determined with the help of the 

Hugoniot relation (Saurel et al., 2007). Let us consider the 
example of fluids governed by the stiffened gas EOS. With 
the help of the EOS, the phasic pressures are constrained 
along their Hugoniot curves as functions only of the 
corresponding phase density:  
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The phase’s internal energies are then determined from the 
EOS: ),p(ee *
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Equipped with this HLLC type approximate Riemann solver, 
the next step is to develop a Godunov type scheme.  
 
Godunov type method 

In the absence of relaxation terms, the conservative part 
of System (4) is updated with the conventional Godunov 
scheme on 3D Cartesian grids: 
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The volume fraction equation is also updated using the 
Godunov method for advection equations: 
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This scheme guarantees volume fraction positivity during 

the hyperbolic step. Other options are possible, as for 
example, VOF type methods (Miller and Puckett, 1996). 
Using a reconstruction algorithm may have nice features 
when dealing with interfaces only, these interfaces having to 
be present at the initial time. As we also deal with dynamic 
appearance of interfaces, a capturing method is preferred.  

Regarding the non-conservative energy equations, there 
is no hope to determine accurate approximation in the 
presence of shocks (Hou and Le Floch, 1990). Therefore, we 
use the simplest approximation of the corresponding 
equations by assuming the product ( ) n

l,j,ikpα  constant 

during the time step: 
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The lack of accuracy in the internal energy computation 

resulting from the present scheme is not so crucial. The 
internal energies will be used only to estimate the phase’s 
pressure at the end of the hyperbolic step, before the 
relaxation one. The relaxation step will give a first correction 
to the internal energies, in agreement with the second law of 
thermodynamics. A second correction will be made with the 
help of the total mixture energy. The details of these two 
steps are described in the next subsections.  

 
Relaxation step 
 

This step is of major importance to fulfill interface 
conditions in non-uniform velocity and pressure flows. It also 
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forces the solution of the pressure non-equilibrium model (3) 
to converge to that of the equilibrium model (1).  
In the relaxation step the system to consider reads,  
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Determination of pressure averages Ikp̂  has to be done in 
agreement with thermodynamic considerations.  

By summing the internal energy equations we have:  
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will be fulfilled if the various pressure averages are taken 
equal, i.e.,  
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This pressure average estimate also agrees with the entropy 
inequality. 

The system to solve is thus composed of equations 
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As the k)(αρ  are constant during the relaxation process, 
this system can be replaced by a single equation with a single 
unknown ( p ). With the help of the EOS the energy equations 
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and thus the only equation to solve (for p ) is 
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Once the relaxed pressure is found, the phase’s specific 

volumes and volume fractions are determined. 
However, there is no guarantee that the mixture EOS or 

the mixture energy be in agreement with this relaxed pressure. 
In order to respect total energy and correct shock dynamics 
on both sides of the interface, the following correction is 
employed.  
 
 
Reset step 
 

As the volume fractions have been estimated previously 
by the relaxation method, the mixture pressure can be 
determined from the mixture EOS based on the mixture 
energy which is known from the solution of the total energy 
equation. As the mixture total energy obeys a conservation 
law, its evolution is accurate in the entire flow field and in 
particular at shocks.  

Again considering fluids governed by the stiffened gas 
EOS, the mixture EOS in this context relates mixture energy, 
density and volume fractions: 
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This EOS is valid in pure fluids and in the diffuse 
interface zone. As it is valid in pure fluids and based on the 
total energy equation, it guarantees correct and conservative 
wave dynamics on both sides of the interface. Inside the 
numerical diffusion zone of the interface, numerical 
experiments show that the method is accurate too, as the 
volume fractions used in the mixture EOS have a quite 
accurate prediction from the relaxation method.  

Once the mixture pressure is determined the internal 
energies of the phases are reset with the help of their 
respective EOS before going to the next time step, 
 

k k k k ke e (p, , )α ρ α= .                              (7) 
 
 
Summary of the numerical method 

 
The numerical method can be summarized as follows: 
 

 At each cell boundary solve the Riemann problem of 
System (4) with the HLLC solver, 

 Evolve all flow variables with the Godunov type method, 
 Determine the relaxed pressure and especially the volume 

fraction by solving Equation (5). The Newton method is 
appropriate for this task. 

 Compute the mixture pressure with Equation (6). 
 Reset the internal energies with the computed pressure 

with the help of their respective EOS (7). 
 Go to the first item for the next time step. 

 
 
 
VALIDATION AGAINST EXPERIMENTS 
 

The aim of this part is to validate the method regarding 
its capabilities to compute cavitating flows. Comparisons 
against experiments done in water tunnel are done. 
Experiments have been achieved at Chungnam National 
University (South Korea) on the following geometry: 
 

 
 

 
Fig. 2 The solid body is axi-symmetric and possesses a 
suction hole (delimited by dashed lines). 
 

A water flow is injected from the left boundary condition 
at the velocity of 25 m/s. The ambient pressure is taken equal 
to 2 atm and is obtained thanks to a right boundary condition 
with imposed pressure far from the solid body. The other 
computational domain boundaries correspond to walls. The 
mesh is presented in the Fig. 3 and computational results are 
presented at steady state in the Figure 4. 

In order to compare with experiments in the same 
conditions, a cut view is done. Comparisons are presented in 
the Figure 5. 

 
 

 
 

 
 
Fig. 3 Mesh used for 3D computations of water tunnel Test 
case with suction hole. The mesh is composed of 443 292 
computational cells (204×53×41). The top picture is a 
general view of the 3D mesh, the bottom view is magnified 
around the head of the solid body. Thanks to the symmetry, 
only a quarter of the physical domain is considered. 

 

 
 
Fig. 4 3D results for solid body with suction hole in water 
tunnel. Gas volume fraction contours are shown at steady 
state. The cavitation pocket that develops around the solid 
body is clearly visible. 
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Fig. 5 Validation against experiments at steady state. Results 
are in perfect agreement. 
 
 
 
HIGH SPEED TORPEDO COMPUTATIONS 
 

The flow model (1) is solved in the multiphase case. The 
simulation under interest deals with a Shkval like torpedo. 
The rocket is supposed to travel underwater at the velocity of 
50 m/s to the left. In the simulations, this motion is modeled 
by a static rocket (considered as an obstacle for the flow) 
with a left boundary condition of injection for the 
computational domain. The rocket is equipped with a nozzle 
connected to a tank boundary condition. In the tank, a gas at 
2500 K (corresponding to high pressure combustion 
products) is supposed to be at the constant pressure of 
Ptank=25bar. The right boundary of the computational domain 
is an outflow condition and the other boundaries (top, bottom, 
front and back) are outflow conditions with imposed pressure. 
The ambient pressure (far from the rocket) depends on the 
evolution depth of the rocket. In this part, the ambient 
pressure will be taken equal to 6 bar corresponding to an 
underwater depth of 50 m. The rocket’s head is composed by 
a solid disk behind which a gas is ejected from an additional 
tank. In this nose tank, the gas is supposed to be at the 
temperature of 2500 K too and at the constant pressure of 
Pnose=35bar. The initial configuration is shown in 2D in the 
Figure 6: 

 
Water inflow 

Velocity 50 m/s, 50 meter 
depth

High pressure tank 
filled with combustion 

products 
Ptank = 25 bar 

Nose pressure tank filled 
with a gas at 
Pnose = 35 bar 
Tnose = 2500 K  

 
Fig. 6 Initial configuration for the Shkval-like rocket vehicle.  
 
The vehicle length is approximately 8 m with a maximum 
radius of 0.25 m. A gas can be injected at the rocket nose just 
behind the cavitating disc. The total simulated domain size is 
equal to 20 m long in the x direction and 6 m in y and z 
directions. 

The goal is to study the effects of gas injection at the nose 
as well as the torpedo tilted angle with respect to the flow 
direction. For that we consider a set of four 3D tests 
summarized in the following table: 

 
Table 1. Simulated tests summary. 

 0° tilted angle 4° tilted angle
Gas is injected  

at nose Test 1 Test 3 

Without gas injection 
at nose Test 2 Test 4 

 
For each test we determine thrust, lift and drag performances.  
 
Absolute thrust determination 

 
We consider the rocket engine composed of a tank 

equipped with a nozzle as schematized in the Figure 7: 
We are going to integrate the momentum equation on the 
system volume composed of both tank and nozzle: 
 

Tank 
Nozzle Sexit 

Swalls 

Stank 

n

n

 
 

Fig 7. Schematic representation of the rocket engine 
equipped with a nozzle. 
 

( )
V V

u dV div u u pI dV 0
t
ρ ρ∂

+ ⊗ + =
∂∫ ∫  

 
Under steady flow assumption, the first integral vanishes and 
we obtain: 
 

( ) ( )
V S S

div u u pI dV u u n dS pndS 0ρ ρ⊗ + = • + =∫ ∫ ∫  

 
Each surface integral can be decomposed in an integral at 
walls and another one at the nozzle exit. It becomes: 
 

( ) ( )
walls exit exitwallsS S S S

u u n dS u u n dS pndS pndS 0ρ ρ• + • + + =∫ ∫ ∫ ∫  

 
The first integral vanishes due to the velocity slip condition. 
We thus obtain: 
 

( )
exit exitwallsS S S

u u n dS pndS pndS 0ρ • + + =∫ ∫ ∫              (8) 

We can define the absolute engine thrust by: 
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walls

abs

S

T pndS= − ∫  

 
Using relation (8), we obtain: 
 

( )
exit exit

abs

S S

T u u n dS pndSρ= • +∫ ∫                     (9) 

 
If we now integrate the momentum equation on the nozzle 
only, we obtain: 
 

( ) ( ) ( )
tan k walls exit
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Again, the second integral vanishes due to the velocity slip 
condition. We thus obtain: 
 

( )
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Using relation (9), new relation for the absolute thrust is 
obtained: 
 

( )
tan k tan k walls

abs

S S S

T u u n dS pndS pndSρ= − • − −∫ ∫ ∫          (10) 

 
Relation (10) is preferred for the absolute thrust computation. 
 
 
Net thrust determination 
 

The net thrust is determined by a similar reasoning. 
Considering again the steady momentum equation,  
 

( ) ( ) 0
V S S

div u u pI dV u u n dS pndSρ ρ⊗ + = • + =∫ ∫ ∫  

 
integration is done over the entire rocket. As ( )u n•  is zero 

everywhere except in the tank the first surface integral 

reduces to ( )
tan kS

u u n dSρ− •∫ . Thus, 

 
In formula (10), the wall surface corresponds to the nozzle 
one, thus: 
 

( )
tan k tan k nozzlewalls

abs

S S S

T u u n dS pndS pndSρ
−

= − • − −∫ ∫ ∫  

The external pressure drag force is defined by: 
 

Swalls body

D pndS
−

= − ∫  

 
Thus, Relation (11) can also be written as: 
 

absT D 0+ = . 
 
This relation is valid at equilibrium only, when the missile 
acceleration is zero. Otherwise it reads: 

absT D mγ+ = , 
 
where γ represents the missile acceleration and m its mass. 
If the sum, 
 

absT D 0+ > , 
 
is positive, the missile is accelerating. Otherwise it is 
decelerating. 
 

( )
Stan k Swalls body

Swalls nozzle S tan k

u u n dS pndS
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ρ
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∫ ∫
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                   (11) 

 
Let us denote by net absT T D= + . The net thrust netT  is 
computed numerically from (11) under the form: 
 

( )
tan k rocket total

net

S S

T u u n dS pndSρ
−

= − • −∫ ∫  

 
Numerical results 

 
A typical result of simulation at steady state is presented 

in the Figures 8 and 9. It deals with Test 3 computations. 
Results obtained for Test 1 to 4 are summarized in the 
following table: 
  
Table 2. Computed forces for each test case. 

Test n Tnet,x (kN) Tnet,y (kN) Tnet,z (kN) Tabs,x (kN)

1 -20 ≈ 0 ≈ 0 -73 

2 17 ≈ 0 ≈ 0 -73 

3 ≈ 0 ≈ 0 200 -75 

4 35 ≈ 0 300 -75 
 

Regarding Test 1 and 2, with the 0° tilted rocket, we 
recover that the net thrust is nearly equal to 0 in y and z 
directions (in fact not strictly equal to zero due the 3D 
numerical discrete approximations). In x direction, absolute 
thrusts are negative and equal for both Test 1 and 2. This is 
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not surprising since the rocket engine is acting for rocket 
motion in the opposite sense of the x-direction. For the net 
thrust along x-direction, the values are quite different 
regarding Test 1 and 2. For Test 1, this value is negative, it 
means that due to the initial conditions (given depth and 
velocity), the rocket engine is delivering more power than 
needed. Thus, the rocket is going to accelerate until the net 
thrust becomes equal to zero. For Test 2, when no gases are 
injected at the rocket nose, the net thrust becomes positive. 
This implies that drag forces acting on the rocket become so 
strong that the rocket is going to decelerate. These results 
validates that injection gases at nose improve the rocket 
performance as it reduces drag effects. 

Regarding tilted rocket now, corresponding to Test 3 and 
4, the absolute thrust force is nearly the same as for Tests 1 
and 2 (here again, some differences can be noticed due to 
discrete approximations), traducing that inclination of the 
rocket has no effects on engine performances. For net thrusts 
in y direction, we always obtain zero, the flow being 
symmetric according to plane xOz. We observe that due to 
inclination, net thrust force in z direction becomes very 
strong and positive. This is due to the contact between the 
rocket body and pure liquid water (as seen in the Figure 8). 
Here again, gas injection in Test 3 tends to improve rocket 
performance by decreasing this value as well as the net thrust 
in the x- direction. 
 

 

 

 
 
Fig. 8 Results of Test 3: Missile moving at 50 m/s under 6 
bar of external pressure with a tilted angle of 4°. 3D 
computational results are shown. In this simulation, a 
gas is injected at the rocket nose producing a pocket 
around the missile. Due to the inclination, the pocket is 

not surrounding the entire missile and liquid water is in 
contact with the rocket bottom. The two first pictures 
are front and rear contour views of the gas volume 
fraction. The last one is a cut view done along the 
rocket axis showing the gas volume fraction contours. 
 

 
 
Fig. 9 Performance data for Test 3: Missile moving at 50 m/s 
under 6 bar of external pressure with a tilted angle of 4°. The 
net thrust acting on the rocket body can be observed (along x 
axis in red line, along y axis in green line and along z axis in 
blue line) as well as the absolute thrust delivered by the rear 
tank of the rocket (purple line). At steady state, the values 
are: 
 

, , ,

,

0 ; 0 ; 200 ;

75 ;
net x net y net z

abs x

T kN T kN T kN
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≈ −
 

 
 
 

CONCLUSIONS 
 
In this paper, a model to treat high speed cavitation has 

been presented and applied to 3D cavitating flows around 
realistic torpedoes of Shkval type. Moreover, it has been 
shown that the formulation allows the determination of 
performance data regarding rocket motion. In particular, we 
have shown that gas injection at the nose of such torpedo is 
of fundamental importance depending on the depth and 
missile velocity. 
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