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OBSTRUCTION FOR THE EXISTENCE OF

A PARALLEL VOLUME FORM

Hee-Kyung Cho, Daeyong Kim, and Hyuk Kim∗

Abstract. For a manifold with a linear connection, we find an obstruc-
tion class to have a volume form parallel with respect to its connection
which corresponds to the Chern-Simons secondary invariant in the frame

bundle of the manifold.

1. Introduction

Let P ∈ Ik(G) be an invariant polynomial of a Lie group G, namely a
symmetric multilinear map P : g× · · · × g︸ ︷︷ ︸

k-times

→ R which is invariant under the

adjoint action of G. Then given a connection ω ∈ A1(E; g) on a principal
G-bundle π : E → M over a manifold M , we can define its curvature Ω ∈
A2(E; g) as Ω = dω + 1

2 [ω, ω] and by composing Ωk with P , we obtain a 2k-

form P (Ωk) on E. Chern and Simons constructed an explicit (2k − 1)-form
TP (ω), called now as the Chern-Simons form, such that dTP (ω) = P (Ωk). In
the case of E = O(M), the orthonormal frame bundle over M , they showed
that as a secondary class, namely when P (Ωk) = 0, [TP (ω)] ∈ H2k−1(E,R)
is a conformal invariant ([1]). In the case k = 1, P := tr and E = F (M),
the linear frame bundle over M , for a given connection ω on F (M), we find
a class [τ ] ∈ H1(M,R) as a secondary class on M when trΩ = 0, satisfying
[π∗τ ] = [trω] = [TP (ω)] ∈ H1(E,R). This class [τ ] can be in fact described
geometrically as an obstruction for the existence of a parallel volume form with
respect to ω.

For an orientable manifold with an affine connection, an obstruction class
in Čech cohomology for the existence of a volume form parallel with respect to
the connection was first obtained in [2]. The class is found in an analytic view
point by solving a differential equation globally that turns out to be equivalent
to parallelism of a volume form. To understand the class in a geometric view

Received September 8, 2010.
2010 Mathematics Subject Classification. 53B05, 53C05.
Key words and phrases. parallel volume form, parallel volume obstruction class.
∗This work was supported by the Korea Research Foundation(KRF) grant funded by the

Korea government(MEST)(No. 2010-0016629).

c⃝2011 The Korean Mathematical Society

1329



1330 HEE-KYUNG CHO, DAEYONG KIM, AND HYUK KIM

point, we find the corresponding class in the de Rham cohomology in several
different aspects and then also in the simplicial cohomology for the case of a
flat affine manifold.

This paper is organized as follows. In Section 2, we observe that to have a
volume form parallel with respect to a given connection is equivalent to solving a
differential equation involving the connection form considered in [2]. In Section
3, we find the de Rham cohomology class corresponding to the Čech cohomology
obstruction class. In Section 4, we show the obstruction class corresponds to the
Chern-Simons secondary class and find a relation between it and the holonomy
group of the linear frame bundle. In Section 5, we interprete the de Rham
cohomology obstruction class in the setting of affine differential geometry. In
fact we describe the obstruction to the existence of a volume form parallel with
respect to a given connection using a 1-form known as Koszul 1-form ([6]),
and show that this Koszul 1-form corresponds our de Rham obstruction class.
In Section 6, we find a simplicial cohomology class corresponding to our class
especially in the flat affine manifold case, and show that this corresponds to
the well known class in the theory of affinely flat manifolds.

2. Obstruction for a parallel volume form

For an orientable n-manifold M , F (M) can be considered as a principal
fibre bundle E = P (M,G) with structure group G := GL(n,R). Now for
E, we choose an open covering {Uα} of M and get a local trivialization ψα :
π−1(Uα) → Uα × G defined by u 7→ (π(u), φα(u)) for a map φα : π−1(Uα) →
G,φα(ua) = φα(u)a for a ∈ G, each α. Then we can define transition func-
tions ψαβ : Uα ∩ Uβ → G defined by x 7→ φα(u)(φβ(u))

−1, π(u) = x such
that for a section σα on Uα defined by σα(x) := ψ−1

α (x, e), where e is the
identity of G, σβ(x) = σα(x)ψαβ(x) (see [5, p. 51]). In fact, we can put

σα =
(

∂
∂x1

α
, . . . , ∂

∂xn
α

)
, σβ =

(
∂

∂x1
β
, . . . , ∂

∂xn
β

)
for local charts (Uα, xα), (Uβ , xβ)

and then since σβ = σα

(
∂xα

∂xβ

)
n×n

, ψαβ =
(

∂xα

∂xβ

)
n×n

=: Aαβ . A connection

in F (M) is called a linear connection of M . Let ∇ be a linear connection on
M . Denote the connection 1-form of ∇ by ω. Define a g-valued 1-form ωα on
Uα by ωα = σ∗

αω. For x ∈ Uα ∩ Uβ , since σβ(x) = σα(x)Aαβ(x), we can get
ωβ = Ad(Aαβ)−1ωα + (Aαβ)

−1dAαβ and hence

trωβ = trωα + d log(det(Aαβ)).(1)

Now we consider an equation which is related to the existence of ∇-parallel
volume form on M .

Proposition 2.1. There exists a local solution Gα on Uα of an equation

dG = trωα(2)

if and only if µ = exp(Gα)dx
1
α ∧ dx2α ∧ · · · ∧ dxnα is ∇-parallel volume form on

Uα.
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Proof. Take a local chart {x1α, . . . , xnα} on Uα and put Xi = ∂
∂xi

α
for i =

1, 2, . . . , n. Then µ = exp(Gα)dx
1
α ∧ dx2α ∧ · · · ∧ dxnα on Uα for some func-

tion Gα. Thus

(∇Xµ)(X1, . . . , Xn) = ∇X(µ(X1, . . . , Xn))−
∑
i

µ(X1, . . . ,∇XXi, . . . , Xn)

= ∇X exp(Gα)−
∑
i

µ

(
X1, . . . ,

∑
j

ωα
j
i (X)Xj , . . . , Xn

)
= X(exp(Gα))−

∑
i

ωα
i
i(X) exp(Gα)

= d(exp(Gα))(X)− tr(ωα(X)) exp(Gα)

= dGα(X) exp(Gα)− tr(ωα(X)) exp(Gα)

= (dGα(X)− tr(ωα(X))) exp(Gα)

= (dGα − tr(ωα))(X) exp(Gα). □

A necessary and sufficient condition to solve the equation (2) locally is tr Ω =
0 since trΩ = tr(dω) = d trω, where Ω is the curvature form of ∇. Under the
assumption that trΩ = 0, an obstruction class for the global solvability of
the equation (2) in terms of the Čech cohomology is considered in [2]. The
equation is solved globally if and only if the obstruction class vanishes. From
now on, we call it the “∇-parallel volume obstruction class” or simply “parallel
volume obstruction class” if the given connection ∇ is well understood. Choose
a local solution Gα of dG = trωα on each Uα. Then on Uα ∩ Uβ , Gβ − Gα −
log(det(Aαβ)) is constant by (1). We denote this constant by cαβ as in [2].

Then [{cαβ}] is the parallel volume obstruction class in Ȟ1(M ;R).

3. Obstruction class in the de Rham cohomology

Given a linear connection ∇ on M with trΩ = 0, take a partition of unity
{fα} subordinate to {Uα} on M . Consider a 1-form

τ
∣∣
Uα

= trωα +
∑

Uα∩Uγ ̸=∅

d(fγ log det(Aαγ)) on Uα.

On Uα ∩ Uβ ,

τ
∣∣
Uα

−τ
∣∣
Uβ

= {trωα +
∑

Uα∩Uγ ̸=∅

d(fγ log det(Aαγ))}

− {trωβ +
∑

Uβ∩Uγ ̸=∅

d(fγ log det(Aβγ))}

= trωα − trωβ +
∑

Uα∩Uβ∩Uγ ̸=∅

d(fγ(log det(Aαγ)− log det(Aβγ)))
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= trωα − trωβ +
∑

Uα∩Uβ∩Uγ ̸=∅

d(fγ log det(Aαβ))

= trωα − trωβ + d(log det(Aαβ)) = 0 by (1).

Hence τ is a well-defined 1-form onM . And since dτ = d(trωα) = d(tr(σ∗
αω)) =

σ∗
α(d(trω)) = σ∗

α(trΩ) = 0, [τ ] ∈ H1
deRham(M ;R).

Proposition 3.1. [τ ] ∈ H1
deRham(M ;R) is independent of the choice of the

partition of unity.

Proof. Take another partition of unity {f ′α} and define τ ′ as above. Then

(τ − τ ′)
∣∣
Uα

= {trωα +
∑

Uα∩Uγ ̸=∅

d(fγ log det(Aαγ))}

− {trωα +
∑

Uα∩Uγ ̸=∅

d(f ′γ log det(Aαγ))}

=
∑

Uα∩Uγ ̸=∅

d((fγ − f ′γ) log det(Aαγ))

= d

( ∑
Uα∩Uγ ̸=∅

(fγ − f ′γ) log det(Aαγ)

)
.

To complete the proof, it is sufficient to show that∑
Uα∩Uγ ̸=∅

(fγ − f ′γ) log det(Aαγ)

is in fact a well-defined global function. On Uα ∩ Uβ , we have∑
Uα∩Uγ ̸=∅

(fγ − f ′γ) log det(Aαγ)

=
∑

Uα∩Uβ∩Uγ ̸=∅

(fγ − f ′γ) log det(Aαγ)

=
∑

Uα∩Uβ∩Uγ ̸=∅

(fγ − f ′γ)(log det(Aαβ) + log det(Aβγ))

=
∑

Uα∩Uβ∩Uγ ̸=∅

(fγ − f ′γ) log det(Aαβ) +
∑

Uβ∩Uγ ̸=∅

(fγ − f ′γ) log det(Aβγ)

= log det(Aαβ)

( ∑
Uα∩Uβ∩Uγ ̸=∅

fγ −
∑

Uα∩Uβ∩Uγ ̸=∅

f ′γ

)
+

∑
Uβ∩Uγ ̸=∅

(fγ − f ′γ) log det(Aβγ)

=
∑

Uβ∩Uγ ̸=∅

(fγ − f ′γ) log det(Aβγ).

Hence [τ ] = [τ ′]. □
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Theorem 3.2. [τ ] ∈ H1
deRham(M ;R) is the parallel volume obstruction class.

Proof. Since dτ |Uα = d(trωα) = 0, there exists Gα on Uα such that trωα =
dGα. Then

τ
∣∣
Uα

= d(Gα +
∑

Uα∩Uγ ̸=∅

fγ log det(Aαγ)),

τ
∣∣
Uβ

= d(Gβ +
∑

Uβ∩Uγ ̸=∅

fγ log det(Aβγ)),

(Gβ +
∑

Uβ∩Uγ ̸=∅

fγ log det(Aβγ))− (Gα +
∑

Uα∩Uγ ̸=∅

fγ log det(Aαγ))

= Gβ −Gα − log det(Aαβ) = cαβ .

So [τ ] ∈ H1
deRham(M ;R) corresponds to [{cαβ}] ∈ Ȟ(M ;R) by the de Rham

isomorphism ([4, p. 226]). □

When [τ ] is trivial, i.e., τ = dg for some function g on M , consider the
volume form

dV = exp

(
g −

∑
Uα∩Uγ ̸=∅

fγ log det(Aαγ)

)
dx1α ∧ · · · ∧ dxnα.

It is easy to show that this volume form is a well-defined global form by similar

computation as before. Also note that d

(
g−

∑
Uα∩Uγ ̸=∅

fγ log det(Aαγ)

)
= trωα

clearly holds by the definition of τ . Hence it is parallel with respect to ∇ by
Proposition 2.1.

4. A secondary class and a relation with the holonomy group

Proposition 4.1. π∗(trωα) + d log | detφα| = trω on π−1(Uα).

Proof. By (1), since

π∗(trωβ) = π∗(trωα) + π∗d log | det(Aαβ)| = π∗(trωα) + dπ∗(log | det(Aαβ)|)
= π∗(trωα) + d log | det(Aαβ ◦ π)| = π∗(trωα) + d log | det(φαφ

−1
β )|

= π∗(trωα) + d log | detφα det(φ−1
β )| = π∗(trωα) + d log

∣∣∣∣detφα

detφβ

∣∣∣∣
= π∗(trωα) + d log | detφα| − d log | detφβ |,

π∗(trωβ) + d log |detφβ | = π∗(trωα) + d log | detφα| on π−1(Uα) ∩ π−1(Uβ).
Thus a 1-form on the principal bundle F (M) which is locally expressed by

π∗(trωα) + d log | detφα| on π−1(Uα)
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is a well-defined global 1-form on F (M). Now let X = hX + vX be any vector
field on F (M), where hX and vX are the horizontal part and the vertical part
of X respectively. Then for u ∈ F (M),

(π∗(trωα) + d log | detφα|)(Xu)

= (tr((σα ◦ π)∗ω) + d log | detφα|)(Xu)

= tr(ω((σα ◦ π)∗Xu)) + tr((φα(u))
−1(φα∗Xu))

= tr(ω((v((σα ◦ π)∗X))σα(x)
)) + tr((φα(u))

−1(φα∗((hX)u + (vX)u)).(3)

On the one hand, since π = π ◦ (σα ◦ π), hX = h((σα ◦ π)∗X) and so

φα∗((hX)u) = φα∗((h((σα ◦ π)∗X)σα(x)).

And since (φα ◦ σα ◦ π)(u) = e, φα∗((σα ◦ π)∗X) = 0 and then

φα∗((h((σα ◦ π)∗X)σα(x)) = −φα∗((v((σα ◦ π)∗X)σα(x)).

On the other hand,

(φα(u))
−1(φα∗(vX)u) = φα∗(vX)σα(x)

= ω((φα∗(vX)σα(x)
)∗u) = ω((vX)u).

Then (3) equals to

tr(ω((v((σα ◦ π)∗X))σα(x)
)) + tr((φα(σα(x)))

−1φα∗((h((σα ◦ π)∗X)σα(x)))

+ tr((φα(u))
−1φα∗((vX)u))

= tr(ω((v((σα ◦ π)∗X))σα(x)
))− tr((φα(σα(x)))

−1φα∗((v((σα ◦ π)∗X)σα(x)))

+ tr(ω((vX)u))

= tr(ω((v((σα ◦ π)∗X))σα(x)
))− tr(ω((v((σα ◦ π)∗X))σα(x)

)) + tr(ω(Xu))

= tr(ω(Xu)). □
Proposition 4.2. [π∗τ ] = [trω].

Proof. On π−1(Uα),

π∗τ − trω = π∗(τ)− (π∗(trωα) + d log | detφα|)

=
∑

Uα∩Uγ ̸=∅

π∗d(fγ log det(Aαγ))− d log | detφα|

= d

( ∑
Uα∩Uγ ̸=∅

π∗(fγ log det(Aαγ))− log | detφα|
)
.

Now it is sufficient to show that
∑

Uα∩Uγ ̸=∅ π
∗(fγ log det(Aαγ)) − log | detφα|

is a well-defined global function on E. On π−1(Uα) ∩ π−1(Uβ),{ ∑
Uα∩Uγ ̸=∅

π∗(fγ log det(Aαγ))− log | detφα|
}

−
{ ∑

Uβ∩Uγ ̸=∅

π∗(fγ log det(Aβγ))− log | detφβ |
}
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=
∑

Uα∩Uβ∩Uγ ̸=∅

π∗(fγ log det(Aαβ))− (log |detφα|+ log | detφ−1
β |)

= π∗(log det(Aαβ))− log | det(φαφ
−1
β )|

= log det(Aαβ ◦ π)− log det(Aαβ ◦ π) = 0. □

Now by computing the volume obstruction, we can get the following result.

Theorem 4.3. [τ ] = 0 if and only if the linear holonomy group is contained
in SL(n,R).

Proof. For a point u in E, take a loop ρ in M based at π(u). Then there exists
a unique horizontal lift ρ∗ of ρ which starts from u. And∫

ρ∗
trω =

∫
ρ∗

∑
α

{tr(π∗ωα) + d(log | detφα|)}

=
∑
α

∫
ρ∗
π∗(tr(ωα)) +

∑
α

∫
ρ∗
d(log | det(φα)|)

=
∑
α

∫
ρ

tr(ωα) + log | det(φα(ρ
∗(1)))| − log | det(φα(ρ

∗(0)))|

=
∑
α

(∫
ρ

tr(ωα) +
∑

Uα∩Uβ ̸=∅

∫
ρ

d(fβ log | det(ψαβ)|)
)

+ log | det(φα(ug))| − log | det(φα(u))|

=

∫
ρ

∑
α

{
tr(ωα) +

∑
Uα∩Uβ ̸=∅

∫
ρ

d(fβ log | det(ψαβ)|)
}

+ log | det(φα(u)g)| − log | det(φα(u))|

=

∫
ρ

τ + log | det(φα(u)) det g| − log | det(φα(u))|

=

∫
ρ

τ + log | det g|,

where g is the element in the holonomy group corresponding to ρ. However,
since ω = 0 on ρ∗, 0 =

∫
ρ
τ + log | det g| and thus

∫
ρ
τ = − log |det g|. Hence

[τ ] = 0 if and only if | det g| = 1. □

Corollary 4.4. A connection ∇ has a parallel volume form if and only if
trΩ = 0 and the linear holonomy group of ∇ is contained in SL(n,R).

5. Parallel volume obstruction class using Koszul 1-form

For a linear connection ∇ with trΩ = 0 given on an orientable n-dimensional
manifold M , let µ be a volume form. Define a 1-form θµ as ∇Xµ = θµ(X)µ
for all X ∈ Γ(TM). Take a local chart {x1, . . . , xn} and let µ = exp(G) dx1 ∧
dx2 ∧ · · · ∧ dxn and put Xi =

∂
∂xi for i = 1, 2, . . . , n. Abusing the notation, let
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ω and Ω be the corresponding connection and curvature forms. Then as in the
proof of Proposition 2.1,

(∇Xµ)(X1, . . . , Xn) = {dG(X)− tr(ω(X))} exp(G).

On the other hand,

(θµ(X)µ)(X1, . . . , Xn) = θµ(X)µ(X1, . . . , Xn) = θ(X) exp(G).

Thus locally,

θµ = dG− trω.

And since dθµ = d(dG − trω) = −d trω = − tr Ω = 0, [θµ] ∈ H1
deRham(M ;R).

For another volume form ν = exp(F )µ,

∇Xν = ∇X(exp(F )µ) = d(exp(F ))(X)µ+ exp(F )θµ(X)µ

= θν(X)ν = θν(X) exp(F )µ.

Then θν = θµ + exp(−F )d exp(F ) = θµ + dF and thus [θµ] = [θν ]. Hence for
any connection ∇ with trΩ = 0, θ∇ := [θµ] for some volume form µ on M is
well-defined and we can get easily the following result equivalent to the one
obtained in [2].

Theorem 5.1. For a linear connection ∇ with trΩ = 0 given on an orientable
n-dimensional manifold M , θ∇ = 0 if and only if there exists a ∇-parallel
volume form. In this case, such parallel form is unique up to constant.

Proof. (⇒) θ∇ = [θµ] = 0 for some volume form µ on M . Then θµ = dF for
some function F . Now define ν = exp(−F )µ and we show that this form is
∇-parallel.

∇Xν = ∇X(exp(−F )µ) = d(exp(−F ))(X)µ+ exp(−F )∇Xµ

= − exp(−F )dF (X)µ+ exp(−F )dF (X)µ

= 0 for all X ∈ Γ(TM).

(⇐) Let µ be a ∇-parallel volume form. Then θµ = 0 and hence θ∇ = [θµ] = 0.
If µ′ = exp(F ′)µ is another parallel volume form, then we have 0 = θµ′ =
θµ + dF ′ = dF ′. Hence such form is unique up to constant. □

Proposition 5.2. For a linear connection ∇ with trΩ = 0 given on an ori-
entable n-dimensional manifold M , θ∇ ∈ H1(M ;R) is the ∇-parallel volume
obstruction class.

Proof. In fact,

τ
∣∣
Uα

= trωα +
∑

Uα∩Uγ ̸=∅

d(fγ log det(Aαγ))

= trωα − dGα + dGα +
∑

Uα∩Uγ ̸=∅

d(fγ log det(Aαγ))
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= −θµα + d

( ∑
Uα∩Uγ ̸=∅

fγ(Gα + log det(Aαγ))

)
,

where µα = exp(Gα)dx
1
α ∧ · · · ∧ dxnα on Uα. Then

τ
∣∣
Uα

+θµα = d

( ∑
Uα∩Uγ ̸=∅

fγ(Gα + log det(Aαγ))

)

= d

( ∑
Uα∩Uγ ̸=∅

fγ(Gα + log det(Aαγ) + cαγ)

)
.

Recall cαβ = Gβ −Gα − log detAαβ is a constant. And on Uα ∩ Uβ , since∑
Uα∩Uβ∩Uγ ̸=∅

fγ(Gβ + log det(Aβγ) + cβγ0)

−
∑

Uα∩Uβ∩Uγ ̸=∅

fγ(Gα + log det(Aαγ) + cαγ0
)

=
∑

Uα∩Uβ∩Uγ ̸=∅

fγ(Gβ −Gα − log det(Aαγ)− log det(Aγβ) + cβγ0 − cαγ0)

=
∑

Uα∩Uβ∩Uγ ̸=∅

fγ(Gβ −Gα − log det(Aαβ) + cβγ0 + cγ0α)

=
∑

Uα∩Uβ∩Uγ ̸=∅

fγ(cαβ + cβγ0 + cγ0α) = 0,

∑
Uα∩Uγ ̸=∅ fγ(Gα+log det(Aαγ)+cαγ0

) is a global function. Notice that cαβ =

−cβα and cαβ + cβγ + cγα = 0 hold from its definition. And thus [τ + θµ] = 0
and hence [τ ] = [−θµ] = −θ∇. □

6. Parallel volume obstruction class on affine flat manifold

Let M be a n-dimensional manifold with a flat affine structure. D is a
developing map from M̃ , the universal covering ofM , into Rn. A triangulation
K of M can be lifted to a triangulation K̃ of M̃ . Take a dual complex of
K (See [3, pp. 80–81]). For each dual 1-simplex (ab) of M , we choose the

developing image of a lifting (ãb) of (ab). Then the image is contained in the
union of two n-simplices △ã and △b̃ with common side such that △ã and △b̃

are the developing images of liftings of each n-simplices a and b. Under an
affine transformation, the ratio of the volumes of two n-simplices is preserved.

So we take a map ϕ defined by (ab) 7→ log
(

vol(△ã)
vol(△b̃)

)
. Since

ϕ((ba)) = log

(
vol(△b̃)

vol(△ã)

)
= −ϕ((ab)),

ϕ is a 1-cochain in M .
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Let (a0, . . . , ak) be a dual 2-simplex which has 1-faces (a0a1), (a1a2), . . .,
(aka0). Since (a0a1)+(a1a2)+· · ·+(aka0) is a trivial loop inM , the developing
image of its lifting (ã0a1) + (ã1a2) + · · ·+ (ãka0) is also a loop.

δϕ((a0, a1, . . . , ak)) = ϕ((a0a1) + (a1a2) + · · ·+ (aka0))

= log

(
vol(△ã0)

vol(△ã1)

)
+log

(
vol(△ã1)

vol(△ã2)

)
+· · ·+log

(
vol(△ãk

)

vol(△ã0)

)
= 0.

Hence, ϕ is a 1-cocycle.

Theorem 6.1. [ϕ] ∈ H1(M ;R) is the parallel volume obstruction class.

Proof. Let ρ = (x0x1) + (x1x2) + · · ·+ (xmx0). Then a lifting of ρ is (x̃0x1) +

(x̃1x2) + · · ·+ ( ˜xmxm+1).

ϕ(ρ) = log

(
vol(△x̃0

)

vol(△x̃1)

)
+ log

(
vol(△x̃1

)

vol(△x̃2)

)
+ · · ·+ log

(
vol(△x̃m

)

vol(△x̃m+1)

)
= log(vol(△x̃0))− log(vol(△x̃m+1)).

△x̃m+1 is the image of △x̃0 by g in the holonomy group corresponding to ρ. So
vol(△x̃m+1) is equal to | det g|vol(△x̃0). Hence

ϕ(ρ) = − log | det g|.

Now the proof follows from the computation in the proof of Theorem 4.3. □

Remark 6.2. Using linear holonomy, we obtain a homomorphism of π1(M) to
GL(n,R). Consider the composition of this homomorphism with − log |det | :
π1(M) → GL(n,R) → R. Since R is abelian, this map induces a map from
H1(M) into R. Then it is an element in H1(M ;R), and is exactly same as ϕ
by Theorem 6.1. When [ϕ] is trivial, the volume is determined up to constant
multiple by the volume of the developing image of a lifting. As an example,
consider a Z× Z = ⟨α, β⟩ action on the real plane R× R defined by α(x, y) =
(x + sty + 1, y + s) and β(x, y) = (x + ty, y + 1) for any real number s and t.
Then it gives a flat structure for the same torus. Indeed α is represented by(

1 st 1
0 1 s
0 0 1

)
and β by

(
1 t 0
0 1 1
0 0 1

)
as an element of Aff(2,R). So the linear holonomy

group is contained in SL(n,R). By Theorem 4.3, the volume obstruction is
trivial. Actually, dx ∧ dy is a parallel volume form. Take u and v in C such
that |u|, |v| > 1, and um ̸= vn for any m,n ∈ N. Let Z × Z = ⟨γ, δ⟩ acts
on C by γ(z) = uz and δ(z) = vz. Then it gives a flat structure for the
affine torus. The element in the holonomy group corresponding to γ and δ
respectively is

(
u1 −u2
u2 u1

)
and

(
v1 −v2
v2 v1

)
as a real linear map, where u = u1 + iu2

and v = v1 + iv2. Their determinants are |u|2 and |v|2 which cannot be equal
to 1. So the volume obstruction is not trivial and hence this structure doesn’t
have a parallel volume form.
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Remark 6.3. Let ∇0 be a metric connection coming from a metric g0 over M .
Then any connection ∇ on M has a form ∇0 + α for some α ∈ Γ(T ∗M ⊗
T ∗M ⊗ TM). And Ω = dω + ω ∧ ω = Ω0 + dα+ α ∧ α+ ω ∧ α+ α ∧ ω. Thus
{∇ = ∇0+α | trΩ = 0} ∼= {α ∈ Γ(T ∗M ⊗T ∗M ⊗TM) | trα is closed } =: S is
a vector space. Now define θ : S → H1(M,R) by α 7→ [θ(α)] = [− trα] = θ∇.
Then θ is linear and K := ker θ = {α | trα is exact }. Moreover we have
M ⊂ K ⊂ S for the set M of metric connections over M . Note that θ is
onto since if β is a closed 1-form on M , then β = trα for α := 1

nβIn. Hence

S/K ∼= H1(M,R).
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