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MEROMORPHIC SOLUTIONS OF SOME

q-DIFFERENCE EQUATIONS

BaoQin Chen and ZongXuan Chen

Abstract. We consider meromorphic solutions of q-difference equations
of the form

n∑
j=0

aj(z)f(q
jz) = an+1(z),

where a0(z), . . . , an+1(z) are meromorphic functions, a0(z)an(z) ̸≡ 0 and
q ∈ C such that 0 < |q| ≤ 1. We give a new estimate on the upper bound
for the length of the gap in the power series of entire solutions for the

case 0 < |q| < 1 and n = 2. Some growth estimates for meromorphic
solutions are also given in the cases 0 < |q| < 1 and |q| = 1. Moreover, we
investigate zeros and poles of meromorphic solutions for the case |q| = 1.

1. Introduction and main results

Recently many papers (see [1-4, 6-10, 13]) focused on complex difference
equations and q-difference equations. Many meaningful results have been ob-
tained. In this paper, we are concerned about meromorphic solutions of q-
difference equations of the form

n∑
j=0

aj(z)f(q
jz) = an+1(z),(1.1)

where a0(z), . . . , an+1(z) are meromorphic functions, a0(z)an(z) ̸≡ 0 and q ∈ C
such that 0 < |q| ≤ 1. Throughout this paper, we assume that the reader is
familiar with the standard notations and the fundamental results of Nevanlinna
theory (see [11, 14, 18]). In addition, we use ρ(f) to denote the order of
growth of the meromorphic function f(z), and λ(f) to denote the exponent of
convergence of zeros of f(z).

We firstly recall a result proved by Bergweiler, Ishizaki and Yanagihara in
[3].
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Theorem A ([3]). Let a0(z), . . . , an+1(z) be polynomials without common zeros
and 0 < |q| < 1. Suppose (1.1) possesses a transcendental entire solution f(z).
Then there is some j, 1 ≤ j ≤ n, such that deg a0(z) < deg aj(z).

In a recent paper [5], we gave estimates on the upper bound for the length
of the gap in the power series of entire solutions of (1.1). In fact, we proved
the following results.

Theorem B ([5]). Let 0 < |q| < 1 and aj(z) = bjz
dj , j = 0, . . . , n where

bj are constants, dj are nonnegative integer numbers such that b0bn ̸= 0, and
let an+1(z) be a polynomial. Suppose that (1.1) has a transcendental entire
solution

f(z) =
∞∑
k=0

αvk
zvk (αvk

̸= 0 are constants).(1.2)

Then there is some k0 > 0 such that for any k > k0,

vk+1 − vk ≤ max
0≤i<j≤n

|dj − di|.

Theorem C ([5]). Let 0 < |q| < 1 and a0(z), . . . , an+1(z) be polynomials.
Suppose that (1.1) has a transcendental entire solution denoted by (1.2). Then
there is some k0 > 0 such that for any k > k0,

vk+1 − vk ≤ max{deg aj : j = 0, . . . , n}.

In what follows, we say f(z) =
∑∞

n=0 αλnz
λn (αλn ̸= 0 are constants) has a

Fabry gap (see [12]), if
λn

n
→ ∞ (n → ∞).

Corollary D ([5]). Let 0 < |q| < 1 and a0(z), . . . , an+1(z) be polynomials.
Suppose that (1.1) possesses a transcendental entire solution f(z). Then f(z)
must not have a Fabry gap.

We improve Theorem B for the case n = 2 here by proving the following
result.

Theorem 1.1. Let 0 < |q| < 1 and aj(z) = bjz
dj , j = 0, 1, 2, where bj are

constants, dj are nonnegative integer numbers such that b0b2 ̸= 0, and let a3(z)
be a polynomial such that a3(0) ̸= 0. Suppose that

a2(z)f(q
2z) + a1(z)f(qz) + a0(z)f(z) = a3(z)(1.3)

has a transcendental entire solution denoted by (1.2). Then there is some k0 > 0
such that for any k > k0,

vk+1 − vk ≤ max
j=1,2

|dj − d0|.

Next, we recall some results in the case that 0 < |q| < 1 and the coefficients
a0(z), . . . , an+1(z) are not all rational functions. Theorem E below follows from
Theorem 3.5 and Corollary 3.6 in [13].
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Theorem E ([13]). Suppose that the coefficients a0(z), . . . , an+1(z) in (1.1) are
meromorphic and of finite order ≤ ρ and 0 < |q| < 1. Then all meromorphic
solutions of (1.1) are of finite order ≤ ρ. In addition, if ρ(an+1) > ρ(aj) for
all j = 0, . . . , n, then ρ(f) = ρ(an+1).

The following two special cases of the coefficients a0(z), . . . , an+1(z) were
investigated in [5].

Case 1: aj(z) = Pj(z)e
pjz +Qj(z), j = 0, . . . , n+ 1, where pj = dje

iθ, θ ∈
[0, 2π), Pj(z), Qj(z) are meromorphic functions with max{ρ(Pj), ρ(Qj)} < 1
and there is some s ∈ {0, . . . , n + 1} such that ds > max{dj : j ̸= s, 0 ≤ j ≤
n+ 1};

Case 2: aj(z) = Pj(z)e
pjz +Qj(z)e

−qjz +Cj(z), j = 0, . . . , n+1, where pj ,
qj ≥ 0, Pj(z), Qj(z), Cj(z) are meromorphic functions with max{ρ(Pj), ρ(Qj),
ρ(Cj)} < 1 and there is some s ∈ {0, . . . , n + 1} such that Ps(z)Qs(z) ̸≡
0, psqs ̸= 0 while P0(z) = · · · = Ps−1(z) = Ps+1(z) = · · · = Pn+1(z) ≡ 0, or
Q0(z) = · · · = Qs−1(z) = Qs+1(z) = · · · = Qn+1(z) ≡ 0.

Theorem F ([5]). If 0 < |q| < 1 and the coefficients of (1.1) satisfy any one of
Cases 1 and 2 listed above, then each non-zero meromorphic solution of (1.1)
is of order ρ(f) = 1.

Some cases similar to Case 1 had been investigated in [13] and some mean-
ingful results were proved. We find that there always exists some dominating
coefficient in all these considerations. As a continuation, we give the following
result which is a generalization of Theorem F.

Theorem 1.2. Suppose that the coefficients a0(z), . . . , an+1(z) in (1.1) are
meromorphic and of finite order ≤ ρ and 0 < |q| < 1. If for any given ε > 0,
there exist some l, 0 ≤ l ≤ n+1, and an unbounded domain D ⊂ C, such that
for all z ∈ D,

|al(z)| ≥ exp{αrρ−ε},
|aj(z)| ≤ exp{βrρ−ε}, j = 0, 1, . . . , l − 1, l + 1, . . . , n+ 1,

where α > β > 0 are positive real numbers, then each non-zero meromorphic
solution of (1.1) is of order ρ(f) = ρ.

To describe the growth of entire solutions more precisely, we consider its
type and prove the following results.

Theorem 1.3. Let 0 < |q| < 1 and the coefficients a0(z), . . . , an+1(z) in (1.1)
be entire and of finite order ≤ ρ such that among those coefficients having
the maximal order ρ := max0≤j≤n+1 ρ(aj), exactly one denoted by al(z) has
its type strictly greater than the others, then each non-zero entire solution of
(1.1) is of order ρ(f) = ρ. Moreover, if l = n + 1, then we have τ(f) ≥
τ(an+1)−max{τ(aj) : ρ(aj) = ρ, j ̸= n+ 1}.

Corollary 1.4. Under the assumptions of Theorem 1.3, if τ(an+1) = ∞, then
each non-zero entire solution of (1.1) is of order ρ(f) = ρ and of type τ(f) = ∞.
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Example. f(z) = ez satisfies

e
1
4 zf(

1

4
z)− f(

1

2
z) + e

1
2 zf(z) = e

3
2 z.

This is an example of Theorem 1.3, where q = 1
2 and n = 2. It shows that

τ(f) = τ(an+1)−max{τ(aj) : ρ(aj) = ρ, j ̸= n+ 1} may hold in Theorem 1.3.

We prove Theorem 1.1 and Theorem 1.3 in Section 2 and Section 3 respec-
tively. We omit the proof of Theorem 1.2 as it can be proved with the same
idea as in the proof of Theorem 1.3. And we give some results and their proofs
for the case |q| = 1 in Sections 4–6.

2. Proof of Theorem 1.1

Firstly, by (1.2), for each j ∈ {0, 1, 2}, we have

aj(z)f(q
jz) = aj(z)

∞∑
k=0

αvk(q
jz)vk = bjz

dj

∞∑
k=0

αvk(q
jz)vk

= bjαv0q
jv0zv0+dj + bjαv1q

jv1zv1+dj + · · ·

+ bjαv(qk−1)
qjv(qk−1)zv(qk−1)+dj

+ bjαvqk
qjvqkzvqk

+dj + bjαv(qk+1)
qjv(qk+1)zv(qk+1)+dj + · · · .(2.1)

Since a3(0) ̸= 0, we can see that aj(z), j = 0, 1, 2, 3, do not have common
zeros. By Theorem A, we have max{d1, d2} > d0. What’s more, from Theorem
B, we see that our conclusion holds for the cases: Case 1. d2 = d1 > d0, Case
2. d2 > d1 ≥ d0, and Case 3. d1 > d2 ≥ d0. Thus we only need to discuss
two cases: Case 4. d2 > d0 > d1 and Case 5. d1 > d0 > d2.

Case 4. d2 > d0 > d1. Suppose that the assertion does not hold, by
Theorem B, then for any given k > 0, there is some qk > k such that

max{d2 − d0, d0 − d1} < v(qk+1) − vqk ≤ d2 − d1.

If d2−d0 = max{d2−d0, d0−d1}, then we can choose an infinitely sequence
{vqk} ⊂ {vk}, such that for any qk,

v(qk+1) + d1 ≤ vqk + d2 < v(qk+1) + d0.(2.2)

If v(qk+1) + d1 = vqk + d2, then we have

vqk + d1 < vqk + d0 < vqk + d2

= v(qk+1) + d1 < v(qk+1) + d0 < v(qk+1) + d2.(2.3)

Substituting (2.1) into (1.3), then arranging the power series of a2(z)f(q
2z)+

a1(z)f(qz) + a0(z)f(z) anew in accordance with the monotone nondecreasing
degree of z, we get that

a3(z) = a2(z)f(q
2z) + a1(z)f(qz) + a0(z)f(z)

= · · ·+ b0αvqk
zvqk

+d0 + · · · .(2.4)
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We notice the boldface terms in (2.1) for j = 0, 1, 2. By (2.2) and (2.3), we see
that in (2.4), there is exactly one term b0αvqk

zvqk+d0 has degree vqk + d0.

For sufficiently large qk, vqk+d0 > deg a3, by (2.4), we see that the coefficient

of zvqk+d0 equals 0. That is b0αvqk
= 0, a contradiction.

Thus we have v(qk+1)+d1 < vqk+d2. Since d2−d0 = max{d2−d0, d0−d1} ≥
d0 − d1, and by (2.2), we obtain

v(qk+1) + d1 = v(qk+1) − vqk + vqk + d1 > vqk + d2 − d0 + d1

= vqk + d0 + (d1 + d2 − 2d0) ≥ vqk + d0.

Then we have

vqk + d1 < vqk + d0 < v(qk+1) + d1 < vqk + d2 < v(qk+1) + d0.

Then we can deduce the same contradiction that b0αvqk
= 0 by an argument

similar to the above.
If d0 − d1 = max{d2 − d0, d0 − d1}, we can deduce the same contradiction

without difficulty. This completes the proof of Case 4.
Case 5. d1 > d0 > d2. By reasoning similar to that in the proof of Case 4,

we can prove Case 5 and finish our proof of Theorem 1.1.

3. Proof of Theorem 1.3

Lemma 3.1 ([15]). Let f(z) be a meromorphic function with ρ(f) = β < +∞.
Then for any given ε > 0, there exists a set E ⊂ (1,+∞) with finite measure,
such that for all z satisfying |z| = r ̸∈ [0, 1] ∪ E, and r sufficiently large,

exp{−rβ+ε} ≤ |f(z)| ≤ exp{rβ+ε}.

Lemma 3.2 ([16]). Let f(z) be a nonconstant entire function with ρ(f) = ρ <
∞, 0 < τ(f) = τ < ∞. Then for any given β < τ , there exists a set E ⊂ (1,∞)
with infinite logarithmic measure, such that for all z satisfying |z| = r ∈ E, we
have,

logM(r, f) > βrρ.

Proof of Theorem 1.3. Let f(z) be a non-zero entire solution of (1.1). By The-
orem E, we have ρ(f) ≤ ρ. We next proceed to show that ρ(f) = ρ. Suppose
that ρ(f) = σ < ρ, then ρ( 1

f(qjz) ) = ρ(f(qjz)) = σ for j = 0, . . . , n.

Denote I := {j ∈ {0, . . . , n+ 1}| ρ(aj) = ρ}, τ := max{τ(aj) : j ∈ I \ {l}},
and ρ̃ := max{ρ(aj) : j ∈ {0, . . . n + 1} \ I} < ρ. From Lemma 3.1, for any
given ε1 (0 < 2ε1 < min{ρ − σ, ρ − ρ̃}), there exists a set E1 ⊂ (1,+∞) with
finite measure, such that for all z = reiθ satisfying |z| = r ̸∈ [0, 1] ∪ E1, and r
sufficiently large, we have∣∣∣∣ 1

f(qlz)

∣∣∣∣ ≤ exp{(|q|lr)σ+ε1} ≤ exp{rσ+ε1},(3.1)

|f(qjz)| ≤ exp{(|q|jr)σ+ε1} ≤ exp{rσ+ε1}(3.2)
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for each j ∈ {0, . . . , n+ 1} \ {l}, and

|aj(z)| ≤ exp{rρ̃+ε1} ≤ exp{rρ−ε1}(3.3)

for each j ∈ {0, . . . , n+ 1} \ I.
Let α1, α2 ∈ R be two constants such that τ < α1 < α2 < τ(al). By

Lemma 3.2 and the definition of the type of an entire function, we see that
there exists a set E2 ⊂ (1,+∞) with infinite logarithmic measure, such that
for all z satisfying |z| = r ∈ E2, and r sufficiently large, we have

M(r, al(z)) > exp{α2r
ρ}, and(3.4)

M(r, aj(z)) < exp{α1r
ρ}, j ∈ I \ {l}.(3.5)

If l ̸= n+ 1, combining these inequalities (3.1)-(3.5) with (1.1), we get

|al(z)|

=

∣∣∣∣ 1

f(qlz)

∣∣∣∣
∣∣∣∣∣∣−

∑
j∈I\{l,n+1}

aj(z)f(q
jz)−

∑
j∈{0,...,n}\I

aj(z)f(q
jz) + an+1(z)

∣∣∣∣∣∣
≤

∣∣∣∣ 1

f(qlz)

∣∣∣∣
 ∑

j∈I\{l,n+1}

M(r, aj(z))|f(qjz)|+
∑

j∈{0,...,n}\I

|aj(z)||f(qjz)|


+

∣∣∣∣ 1

f(qlz)

∣∣∣∣ |an+1(z)|

≤ (n+ 1) exp{α1r
ρ + 2rσ+ε1}

for all z = reiθ satisfying |z| = r ∈ E2 \ E1, and M(r, al(z)) = |al(z)|. This
then implies that

exp{(α2 − α1)r
ρ − 2rσ+ε1} ≤ n+ 1,

holds for sufficiently large r ∈ E2 \ E1, which is a contradiction.
If l = n+1, we can use the same method to deduce a similar contradiction.

The first assertion now follows immediately.
We next show that τ(f) ≥ τ(an+1)− τ when l = n+1. Assume contrary to

the assertion that τ(f) < τ(an+1)− τ .
From Lemma 3.1, for any given ε2 (0 < 4ε2 < min{τ(an+1)−τ−τ(f), ρ−ρ̃}),

there exists a set E3 ⊂ (1,+∞) with finite measure, such that for all z satisfying
|z| = r ̸∈ [0, 1] ∪ E3, and r sufficiently large, we have

(3.6) |aj(z)| ≤ exp{rρ̃+ε2} ≤ exp{rρ−ε2} j ∈ {0, . . . , n} \ I.

By Lemma 3.2 and again the definition of the type of an entire function,
we see that there exists a set E4 ⊂ (1,+∞) with infinite logarithmic measure,
such that for all z = reiθ satisfying |z| = r ∈ E4, |an+1(re

iθ)| = M(r, an+1)
and r sufficiently large, we have

(3.7) M(r, an+1(z)) > exp{(τ(an+1)− ε2)r
ρ},
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(3.8) M(r, f(qjz)) < exp{(τ(f) + ε2)(|q|jr)ρ} ≤ exp{(τ(f) + ε2)r
ρ}

for j = 0, . . . , n, and

(3.9) M(r, aj(z)) < exp{(τ + ε2)r
ρ}, j ∈ I \ {n+ 1}.

Combining inequalities (3.6)-(3.9) with (1.1), we get

|an+1(z)| =

∣∣∣∣∣∣
∑

j∈I\{n+1}

aj(z)f(q
jz) +

∑
j∈{0,...,n}\I

aj(z)f(q
jz)

∣∣∣∣∣∣
≤

∑
j∈I\{n+1}

M(r, aj(z))M(r, f(qjz))+
∑

j∈{0,...,n}\I

|aj(z)|M(r, f(qjz))

≤ (n+ 1) exp{(τ + τ(f) + 2ε2)r
ρ}

for all z = reiθ satisfying |z| = r ∈ E4 \ E3, and M(r, an+1(z)) = |an+1(z)|.
This then implies that

exp{[τ(an+1)− τ − τ(f)− 3ε2]r
ρ} ≤ n+ 1,

holds for sufficiently large r ∈ E4 \E3, which is a contradiction. Hence we have
proven that τ(f) ≥ τ(an+1)− τ . □

4. The case of |q| = 1

In the previous sections, we assumed that q was a non-zero complex constant
with 0 < |q| < 1. The following mainly deals with the corresponding results if
|q| = 1. Moreover, a further result about the solutions of (1.1) is also given.

Theorem G ([5]). Suppose a0(z), . . . , an+1(z) are polynomials and q is a con-
stant with |q| = 1 and q ̸= 1. If (1.1) possesses a nonconstant meromorphic
solution f(z), then

(i) if f(z) is a rational function of the form

f(z) =
p0 + p1z + · · ·+ pmzm

q0 + q1z + · · ·+ qtzt
,

then t−m ≤ max{deg aj : j = 0, . . . , n} − deg an+1.
(ii) if there is some l ∈ {0, . . . , n}, such that

deg al > max
j∈{0,...,n}\{l}

{deg aj},

and f(z) is a transcendental function, then f(z) has infinitely many poles.

Now we get the Theorem 4.1 as a continuation of Theorem 5.1 in [13] below.

Theorem 4.1. Suppose the coefficients a0(z), . . . , an+1(z) of (1.1) are mero-
morphic, a0(z)an(z) ̸≡ 0, and q = eiθ, θ = λπ, λ ∈ (0, 2)\Q. If (1.1) possesses
a nonconstant meromorphic solution f(z), then the non-zero poles of f(z) are
of the form { z

qk
| a0(z) = 0 or aj(z) = ∞, j = 1, . . . , n+ 1, k ∈ N ∪ {0}}.

From Theorem G and Theorem 4.1, the following consequence obviously
holds.
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Corollary 4.2. Suppose the coefficients a0(z), . . . , an+1(z) of (1.1) are poly-
nomials, a0(z)an(z) ̸≡ 0, and q = eiθ, θ = λπ, λ ∈ (0, 2) \Q. If (1.1) possesses
a nonconstant meromorphic solution f(z), then f(z) has at most finitely many
non-zero poles, which are of the form { z

qk
| a0(z) = 0, k ∈ N∪{0}}. Moreover,

if there is some l, 0 ≤ l ≤ n, such that

deg al > max
j∈{0,...,n}\{l}

{deg aj},

then f(z) must be a rational function.

We give some examples to show that there exist some equations of the form
(1.1), which satisfy Theorem 4.1 or Corollary 4.2.

Examples. (1) f(z) = ez

(z−1)(qz−1) is a meromorphic function and satisfies the

equation
a1(z)f(qz) + a0(z)f(z) = a2(z),

where

q = ei
√
2π, a0(z) = −(z−1)eqz, a1(z) = (q2z−1)(ez+1), a2(z) =

eqz

qz − 1
;

(2) f(z) = 1
z+1 is a rational function and satisfies the equation

a1(z)f(qz) + a0(z)f(z) = a2(z),

where

q = ei
√
2π, a0(z) = z2(z + 1), a1(z) = qz + 1, a2(z) = z2 + 1;

(3) f(z) = z + 1 is a polynomial and satisfies the equation

a2(z)f(q
2z) + a1(z)f(qz) + a0(z)f(z) = a3(z),

where

q = ei
√
2π, a0(z) = 1−z, a1(z) = qz−1, a2(z) = z2, a3(z) = q2z2(z+1).

In the theorems above, we investigated the poles of meromorphic solutions
of (1.1). Now we give a result on the zeros of meromorphic solutions of (1.1).

Theorem 4.3. Suppose the coefficients a0(z), . . . , an+1(z) of (1.1) are polyno-
mials, a0(z)an(z) ̸≡ 0, and q = eiθ, θ = λπ, λ ∈ (0, 2) \ Q. If (1.1) possesses
a nonconstant finite order meromorphic solution f(z), then λ(f) = ρ(f).

As counterparts of Theorem 1.2, Theorem 1.3 and Corollary 1.4, we give the
following results. Proofs of Theorem 4.4 and Theorem 4.5 are similar to the
proof of Theorem 1.3 and thus omitted.

Theorem 4.4. Suppose that the coefficients a0(z), . . . , an+1(z) in (1.1) are
meromorphic and of finite order ≤ ρ and |q| = 1. If for any given ε > 0, there
exist some l, 0 ≤ l ≤ n + 1, and an unbounded domain D ⊂ C, such that for
all z ∈ D,

|al(z)| ≥ exp{αrρ−ε},
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and

|aj(z)| ≤ exp{βrρ−ε}, j = 0, 1, . . . , l − 1, l + 1, . . . , n+ 1,

where α > β > 0 are positive real numbers, then each non-zero meromorphic
solution of (1.1) is of order ρ(f) ≥ ρ.

Theorem 4.5. Let |q| = 1 and the coefficients a0(z), . . . , an+1(z) in (1.1) be
entire and of finite order ≤ ρ such that among those coefficients having the
maximal order ρ := max0≤j≤n+1 ρ(aj), exactly one denoted by al(z) has its
type strictly greater than the others. Then each non-zero entire solution of
(1.1) is of order ρ(f) ≥ ρ. Moreover, if l = n+ 1 and ρ(f) = ρ, then we have
τ(f) ≥ τ(an+1)−max{τ(aj) : ρ(aj) = ρ, j ̸= n+ 1}.

Corollary 4.6. Under the assumptions of Theorem 4.5, if τ(an+1) = ∞, then
each non-zero entire solution of (1.1) satisfying ρ(f) = ρ is of type τ(f) = ∞.

We recall the following examples given in [5] to show that the growth esti-
mate of meromorphic solutions of (1.1) in Theorems 4.5 is sharp, where exam-
ples (1) and (3) show that ρ(f) > ρ may hold in Theorems 4.5. What’s more,
Example (2) shows that the type estimate is also sharp.

Examples. (1) ezf(qz)− e3zf(z) = ze4z + z, q = −1, f(z) = ez
2−z − zez;

(2) ezf(qz) + (ez − e−z)f(z) = e2z, q = −1, f(z) = ez;

(3) ezf(q2z) + ezf(qz)− (ez + e−z)f(z) = 0, q = −1, f(z) = ez
2+z.

5. Proof of Theorem 4.1

Set B = {z| aj(z) = ∞, j = 1, . . . , n + 1}. Suppose that there exists a

pole z0 of f(z) such that for any bs ∈ B, z0 is not of the form bs
qk

(for any

k ∈ N ∪ {0}). That is

aj(q
kz0) ̸= ∞, j = 1, . . . , n+ 1, ∀ k ∈ N ∪ {0}.(5.1)

As q = eiθ, θ = λπ, λ ∈ (0, 2) \Q, we see that for any k, l ∈ N∪ {0}, k ̸= l,

(k − l)θ ̸≡ 0 (mod 2π),

which yields that

qk ̸= ql.

Since f(z) is a meromorphic function, we see that f(z) has at most finitely
many poles on the circle |z| = |z0|. Then f(z) has at most finitely many poles
which are of the form qkmz0, m = 0, . . . , t. such that 0 ≤ k0 ≤ k1 ≤ · · · ≤ kt.
That is

f(qktz0) = ∞, f(qkt+jz0) ̸= ∞, j = 1, . . . , n+ 1.(5.2)

From (1.1), we have

a0(q
ktz0)f(q

ktz0) = −
n∑

j=1

aj(q
ktz0)f(q

kt+jz0) + an+1(q
ktz0).(5.3)
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Then by (5.1)-(5.3), we conclude that a0(q
ktz0) = 0, which means that,

there exists a point z∗ such that

a0(z
∗) = 0, z0 =

z∗

qkt
.

Thus Theorem 4.1 is proved.

6. Proof of Theorem 4.3

Lemma 6.1 ([17]). Let fj(z) (j = 1, . . . , n, n ≥ 2) be meromorphic functions,
gj(z) (j = 1, . . . , n) be entire functions, and satisfy

(i)
∑n

j=1 fj(z)e
gj(z) ≡ 0;

(ii) when 1 ≤ j < k ≤ n, gj(z)− gk(z) is not a constant; and
(iii) when 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, eg
h−gk

)}, (r → ∞, r ̸∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure.
Then fj(z) ≡ 0 (j = 1, . . . , n).

Proof of Theorem 4.3. Assume contrary to the assertion that λ(f) < ρ(f). By
Corollary 4.2, we see that f(z) has at most finitely many non-zero poles, then
λ( 1f ) = 0 < ρ(f). Thus, since f(z) is a meromorphic function of finite order,

then we can set

f(z) = P (z)ep(z),(6.1)

where P (z) is a meromorphic function such that ρ(P ) < ρ(f), and p(z) is a
polynomial such that d = deg(p) = ρ(f). Now set

p(z) = αdz
d + αd−1z

d−1 + · · ·+ α0,

where αd ̸= 0, αd−1, . . . , α0 are constants.
Substituting (6.1) into (1.1), we get

n∑
j=0

aj(z)P (qjz)ep(q
jz) − an+1(z) = 0.(6.2)

As q = eiθ, θ = λπ, λ ∈ (0, 2)\Q, we see that for any 0 ≤ k < l ≤ n, qk ̸= ql.
Clearly,

p(qkz)− p(qlz) = αd(q
kd − qld)zd + · · ·+ α1(q

k − ql)z,

and hence deg(p(qkz)− p(qlz)) = d.
Since a0(z), . . . , an+1(z) of (1.1) are polynomials and by ρ(P ) < d, we have,

for 0 ≤ j ≤ n, 0 ≤ k < l ≤ n, 0 ≤ h ≤ n,

T (r, aj(z)P (qjz)) = o{T (r, ep(q
kz)−p(qlz))} = o{T (r, ep(q

hz))}, and

T (r, an+1(z)) = o{T (r, ep(q
kz)−p(qlz))} = o{T (r, ep(q

hz))}.
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Applying Lemma 6.1 to (6.2) yields

aj(z) ≡ 0, j = 0, . . . , n+ 1.

This is a contradiction. Thus Theorem 4.3 is proved. □
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