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CONTINUITY OF SPECTRA AND

COMPACT PERTURBATIONS

Salvador Sánchez-Perales and Slavǐsa V. Djordjević

Abstract. In this note we give conditions for continuity of spectrum,
approximative point spectrum and defect spectrum on the set {T}+K(X),
where T ∈ B(X) and K(X) is the set of compact operators.

1. Introduction

Let X be a Banach space, and let B(X) denote the algebra of bounded lin-
ear operators defined on X into itself. For T ∈ B(X), let σ(T ), σe(T ), σle(T ),
σre(T ), σa(T ) and σs(T ) denote respectively the spectrum, the essential spec-
trum, the left essential spectrum, the right essential spectrum, the approximate
point spectrum and the surjective spectrum. We set σlre(T ) = σle(T )∩σre(T ).
Let S denote the collection of all non-empty compact subsets of C. Equip-
ping S with the Hausdorff metric, the spectrum can be viewed as a function
σ : B(X) → S mapping operators T ∈ B(X) into their spectrum σ(T ). In
general the spectrum is not continuous, but it is always upper semi-continuous
(see [8]).

Given an operator T ∈ B(X), we write N(T ) and R(T ) for null space and
range of T . Denote α(T ) = dimN(T ) and β(T ) = dimX/R(T ). An operator T
is called upper semi-Fredholm (T ∈ Φ+(X)), respectively lower semi-Fredholm
(T ∈ Φ−(X)), if R(T ) is closed and α(T ) < ∞, respectively β(T ) < ∞. If
T is either upper or lower semi-Fredholm, then T is called a semi-Fredholm
operator (T ∈ Φ±(X)). When T is both upper and lower semi-Fredholm, T
is a Fredholm operator (T ∈ Φ(X)). The index of a semi-Fredholm operator
T is defined as i(T ) = α(T ) − β(T ). We set Φ−

+(X) = {T ∈ B(X) | T ∈
Φ+(X) and i(T ) ≤ 0}, Φ+

−(X) = {T ∈ B(X) | T ∈ Φ−(X) and i(T ) ≥ 0} and
Φ0(X) = {T ∈ Φ(X) | i(T ) = 0}.

The ascent of T ∈ B(X), denoted by asc(T ), and the descent of T , denoted
by des(T ), are respectively the least non-negative integer n such that N(Tn) =
N(Tn+1), respectively R(Tn) = R(Tn+1). If no such n exists, then asc(T ) =
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∞, respectively des(T ) = ∞. We say that T has finite ascent (resp. descent)
at λ ∈ C if asc(λ− T ) < ∞ (resp. des(λ− T ) < ∞).

The Weyl spectrum, the Browder spectrum, the point spectrum and the
set of Riesz points of T ∈ B(X) are defined respectively by σw(T ) = {λ ∈
C | λ − T /∈ Φ0(X)}, σb(T ) = {λ ∈ C | λ − T /∈ Φ0(X) or asc(λ − T ) = ∞},
σp(T ) = {λ ∈ C | λ is an eigenvalue of T } and π0(T ) = {λ ∈ C | λ is a pole of
T of finite rank}.

Let Tn, T ∈ B(X). We say that Tn converges in norm to T , denoted by
Tn → T , if limn→∞ ∥Tn − T∥ = 0. A function τ , defined on B(X), whose
values are non-empty compact subsets of C is said to be upper (lower) semi-
continuous at T , if Tn → T implies lim sup τ(Tn) ⊆ τ(T ) (τ(T ) ⊆ lim inf τ(Tn)).
It is known that if τ is bounded on convergent sequences, then τ is continuous in
“the Hausdorff metric” if and only if τ is both upper and lower semi-continuous
at T .

The rest of this paper is organized as follows. In Section 2, we present rela-
tions between Browder’s type theorems and continuity of different spectrums.
In Section 3, we give conditions for continuity of spectrum when restricted to
{T}+K(X) where T ∈ B(X) and K(X) is the set of compact operators. And
in Section 4, we assume continuity of the spectrum at T ∈ B(X) and give
sufficient conditions for continuity of spectrum at T +K, where K ∈ K(X).

2. The Browder’s theorem and continuity of spectrum

We say that Browder’s theorem holds for T ∈ B(X) if

σ(T ) \ σw(T ) = π0(T )

(or equivalently σb(T ) = σw(T )).
A bounded linear operator T ∈ B(X) is said to have the single valued ex-

tension property (SVEP, for short) at λ ∈ C, if for every open neighborhood
Uλ of λ, the only analytic function f : Uλ → X which satisfies the equation
(T −µ)f(µ) = 0 for all µ ∈ Uλ is the function f ≡ 0. Evidently T has SVEP at
points in the resolvent ρ(T ) = C \ σ(T ), furthermore by the identity theorem
for analytic functions both T and T ∗ have SVEP at every point of the bound-
ary ∂σ(T ) of the spectrum. In particular, both T and T ∗ have SVEP at the
isolated points of σ(T ).

Proposition 2.1. If T ∈ B(X), then

σ(T ) \ σw(T ) = π0(T ) ∪ int[σ(T ) \ σw(T )].

Proof. Evidently, int[σ(T ) \ σw(T )] ⊆ σ(T ) \ σw(T ). Since λ ∈ π0(T ) ⇐⇒
asc(λ−T ) = des(λ−T ) < ∞, α(λ−T ) < ∞ ⇐⇒ asc(λ−T ) = des(λ−T ) < ∞,
α(λ − T ) = β(λ − T ) < ∞ [1, Theorem 3.4], λ ∈ σ(T ) \ σw(T ). Hence
π0(T ) ∪ int[σ(T ) \ σw(T )] ⊆ σ(T ) \ σw(T ).

For the opposite inclusion, let λ ∈ σ(T ) \ σw(T ). If λ ̸∈ intσ(T ), then
λ ∈ ∂σ(T ) and λ− T ∈ Φ(X). Since T and T ∗ have SVEP at λ, it follows by
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Theorem 3.16 and Theorem 3.17 of [1] that asc(λ−T ) < ∞ and des(λ−T ) < ∞.
Thus λ ∈ π0(T ). Now, if λ ∈ intσ(T ), then λ ∈ int[σ(T ) \ σw(T )], because
λ ∈ C \ σw(T ) and this set is open. □

Given T ∈ B(X), define

ϕ+(T ) = {λ ∈ C |λ− T ∈ Φ±(X), N(λ− T ) is complemented

and i(λ− T ) > 0},
ϕ−(T ) = {λ ∈ C |λ− T ∈ Φ±(X), R(λ− T ) is complemented

and i(λ− T ) < 0}.

We set ϕ±(T ) = ϕ+(T ) ∪ ϕ−(T ). It is not difficult to prove that all these
sets are open.

Let H be a Hilbert space, and let A ∈ B(H) be a continuity point of σ. We

know ([4, Theorem 3.1]) that for each λ ∈ σ(A) \ ϕ±(A) and ϵ > 0, the ball
B(λ, ϵ) contains a component of π0(A) ∪ σlre(A). Thus, since σ(A) \ σw(A) ⊆
σ(A) \ ϕ±(A) and int[σ(A) \ σw(A)] ∩ [π0(A) ∪ σlre(A)] = ∅, it follows that
int[σ(A) \ σw(A)] = ∅ ([4, Corollary 3.2]).

Theorem 2.2. Let H be a Hilbert space. If σ is continuous at T ∈ B(H), then
T satisfies Browder’s theorem.

Proof. By Proposition 2.1, σ(T ) \ σw(T ) = π0(T ) ∪ int[σ(T ) \ σw(T )], and by
the argument above, int[σ(T ) \ σw(T )] = ∅. Thus σ(T ) \ σw(T ) = π0(T ), i.e.,
T satisfies Browder’s theorem. □

For approximate point spectrum we also have an analogous theorem to the
previous, see Theorem 2.4.

Proposition 2.3. Let λ ∈ σ(T ) \σa(T ). Then for every sequence of operators
{Tn} in B(X) that converges in norm to T , λ ∈ lim inf σ(Tn).

Proof. Let λ ∈ σ(T ) \ σa(T ) and suppose that for some sequence of operators
{Tn} that converges in norm to T , λ /∈ lim inf σ(Tn). We may assume without
loss of generality that λ /∈ σ(Tn) for every positive integer n. Thus, λ − T ∈
Φ+(X) and λ−Tn are Fredholm operators with index zero such that λ−Tn →
λ − T . By the continuity of the index, it follows that i(λ − T ) = 0. Since
already λ− T is left invertible, λ− T is invertible. □

For T ∈ B(X), let

σea(T ) = {λ ∈ C | λ− T ̸∈ Φ−
+(X)}, σes(T ) = {λ ∈ C | λ− T ̸∈ Φ+

−(X)}
and

σab(T ) = {λ ∈ C | λ− T ̸∈ Φ−
+(X) or asc(λ− T ) = ∞}.

We say that a-Browder’s theorem holds for T if accσa(T ) ⊆ σea(T ). This
condition is equivalent, see for example [7, Theorem 8.3.3], to each of following
conditions:
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(1) σea(T ) = σab(T ),
(2) σa(T ) = σea(T ) ∪ isoσa(T ).

Theorem 2.4. Let H be a Hilbert space. If σa is continuous at T ∈ B(H),
then T satisfies a-Browder’s theorem.

Proof. It is well known that the continuity of σa at T implies ϕ−(T )∩σp(T ) = ∅
(see [5, Theorem 5.1]). We show that σa(T ) = σea(T ) ∪ isoσa(T ). It is clear
that σea(T ) ∪ isoσa(T ) ⊆ σa(T ). Let λ ∈ σa(T ). Suppose that λ ̸∈ σea(T ),
then λ− T ∈ Φ+(H) and i(λ− T ) ≤ 0.

If i(λ− T ) < 0, then λ ∈ ϕ−(T ), and so λ ̸∈ σp(T ). Therefore N(λ− T ) =
{0}, consequently since λ ∈ σa(T ), it follows that R(λ− T ) is not closed. But
this is a contradiction to λ − T ∈ Φ+(H). Thus i(λ − T ) = 0, which implies
that λ ∈ σ(T ) \ σw(T ).

On other hand, Proposition 2.3 and continuity of σa at T imply that σ is
continuous at T , and hence by Theorem 2.2, T satisfies Browder’s theorem.
Thus λ ∈ σ(T ) \ σw(T ) = π0(T ) that implies λ ∈ isoσa(T ). □

From Theorems 2.2 and 2.4 we can see that there is a connection between
Browder’s type theorems and continuity of different spectrums. This fact also
was put out in Theorem 2.1 and Theorem 2.2 of [6], but the latter with one
omission. In fact, Browder’s theorem implies the equivalence of continuity of
Weyl spectrum and Browder spectrum, but not the equivalence of continuity
of the (usual) spectrum and the Weyl spectrum. To see this, review Example
4.1 and Remark 4.2 of Section 4. In order to have the second equivalence,
additional conditions are necessary, see [3, Theorem 14.17].

3. Continuity of spectrum on {T} + K(X)

It is known that if λ ∈ isoσ(T ), then for every sequence {Tn} in B(X) that
converges in norm to T , λ ∈ lim inf σ(Tn) (see [8, Theorem 2]). Moreover, since

lim inf σ(Tn) is a closed set, it follows that isoσ(T ) ⊂ lim inf σ(Tn). Therefore
the spectrum is continuous at every compact operator K.

We have observed that the spectrum is continuous on the space of compact
operators K(X). Nevertheless, this does not guarantee that the spectrum is
continuous on the set of compact perturbations of an operator T ∈ B(X), i.e.,
on {T} + K(X). In fact, let U be the unilateral shift on ℓ2(N) and let T , Kn

be operators defined on ℓ2(N)⊕ ℓ2(N) as

T =

[
U 0
0 U∗

]
Kn =

[
0 1

n (I − UU∗)
0 0

]
.

Then {Kn}n∈N are compact (one-dimensional) operators and T +Kn → T +0,
but σ(T+Kn) ̸→ σ(T+0). Indeed, each T+Kn is similar to T+K1 and T+K1 is
an unitary operator, so for every n, σ(T+Kn) = σ(T+K1) = {λ ∈ C | |λ| = 1},
and σ(T + 0) = {λ ∈ C | |λ| ≤ 1}.
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Let T, Tn ∈ B(X) be such that Tn converge in norm to T . It is known that
if λ is a finite rank pole of T , then there exists a finite rank pole λn of Tn, for
all n large, such that {λn} converges to λ. Hence, we have next lemma:

Lemma 3.1. π0 : B(X) → S is lower semi-continuous.

Recall that

(3.1) σb(T ) =
∩

K ∈ K(X)
TK = KT

σ(T +K) and σw(T ) =
∩

K∈K(X)

σ(T +K).

Theorem 3.2. Let T ∈ B(X) and Kn, K ∈ K(X) be such that Kn → K and
TK = KT . If T has finite ascent at every λ ∈ σp(T ), then σ(T + Kn) →
σ(T +K).

Proof. Let us remember that the spectrum σ is upper semi-continuous (see [8,
Theorem 1]), thus lim supσ(T +Kn) ⊆ σ(T +K). Hence we only need to prove
that σ(T +K) ⊆ lim infσ(T +Kn).

Let λ ∈ σ(T +K). If λ ∈ σw(T ), then by (3.1), λ ∈ σ(T +Kn) for all n ∈ N.
Thus λ ∈ lim infσ(T +Kn).

Suppose that λ ̸∈ σw(T ), this implies that λ− T ∈ Φ0(X) and consequently
λ − (T + K) ∈ Φ0(X). If λ ̸∈ σ(T ), then λ − T is invertible and hence
asc(λ − T ) < ∞, now if λ ∈ σ(T ), then α(λ − T ) > 0, i.e., λ ∈ σp(T ), thus
from hypothesis asc(λ − T ) < ∞. Therefore, in any case, asc(λ − T ) < ∞.
Observe that (λ − T )(−K) = −λK + TK = −λK + KT = (−K)(λ − T ).
This implies from [1, Theorem 3.43] that asc(λ − T − K) < ∞. Thus, since
asc(λ − (T + K)) < ∞ and λ − (T + K) ∈ Φ0(X), it follows by [1, Theorem
3.4] that des(λ− (T +K)) < ∞ that implies λ ∈ π0(T +K) (see, for example,
[1, Remark 3.7(c)]). Consequently, by Lemma 3.1,

λ ∈ lim infπ0(T +Kn) ⊆ lim infσ(T +Kn). □
It is well known (see for example [7]) that if T or T ∗ has SVEP at every

λ ∈ σ(T ) \ σw(T ), then Browder‘s theorem holds for T .

Corollary 3.3. If T ∈ B(X) has SVEP at any λ ∈ σ(T ) \ σw(T ). Then for
every K ∈ K(X) such that

(i) TK = KT or
(ii) intσ(T +K) ⊆ σ(T ),

it follows that σ(T + Kn) → σ(T + K) for any sequence {Kn} ⊂ K(X) such
that Kn → K.

Proof. By demonstration of Theorem 3.2 we have to observe only the case when
λ ∈ σ(T +K) \ σw(T ). By corollary’s hypothesis T obeys Browder’s theorem,
and for λ ∈ σ(T +K) \ σw(T ) we have that λ − T is a Fredholm operator of
index zero with finite ascent and descent.

(i) If K ∈ K(X) commutes with T , then by [1, Theorem 3.43] we have that
λ−(T +K) is a Fredholm operator of index zero with finite ascent and descent,
and so λ ∈ π0(T +K) ⊂ lim inf σ(T +Kn).
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(ii) If λ ̸∈ σ(T ), then it is clear that λ ̸∈ intσ(T + K). Now, if λ ∈ σ(T ),
then λ ∈ π0(T ) and so λ ̸∈ intσ(T ). But, since intσ(T + K) ⊆ intσ(T ), it
follows that λ ̸∈ intσ(T + K). Thus, in any case λ ̸∈ intσ(T + K). This
implies that λ ∈ ∂σ(T +K)\σe(T +K) ⊆ π0(T +K). Hence λ ∈ π0(T +K) ⊂
lim inf σ(T +Kn). □
Corollary 3.4. Let H be a Hilbert space and let T ∈ B(H) be a continuity
point of spectrum. If K is a compact operator that commutes with T , then
σ(T +Kn) → σ(T +K) for any sequence {Kn} ⊆ K(H) that converges to K.

Proof. By Theorem 2.2, Browder’s theorem holds for T , and following the proof
of Corollary 3.3, we have that σ(T +Kn) → σ(T +K). □

Necessary and sufficient conditions in order that T obeys a-Browder’s theo-
rem is T or T ∗ has SVEP at every λ ̸∈ σea(T ) ([7, Thm. 8.3.3 and Cor. 8.3.4]).
Also, a-Browder’s theorem implies Browder’s theorem.

It is well known that

σea(T )=
∩

K∈K(X)

σa(T +K) and σab(T )=
∩

K ∈ K(X)
TK = KT

σa(T +K)(see [1, p. 138]).

Theorem 3.5. Let K ∈ K(X) be commutes with T ∈ B(X) and let {Kn} be a
sequence of compacts operators such that Kn → K.

(a) If T ∗ has SVEP at every λ ̸∈ σea(T ), then σa(T +Kn) → σa(T +K).
(b) If T has SVEP at every λ ̸∈ σes(T ), then σs(T +Kn) → σs(T +K).

Proof. We will proof only part (a) and by duality we have part (b).
(a) Let λ ∈ σa(T + K). If λ ∈ σea(T ), then λ ∈ σa(T + F ) for every

F ∈ K(X) and consequently λ ∈ lim inf σa(T +Kn).
Suppose that λ /∈ σea(T ). By theorem’s hypothesis, a-Browder’s theorem

holds for T , thus λ /∈ σab(T ), i.e., λ − T ∈ Φ−
+(X) and asc(λ − T ) < ∞.

Moreover, since T ∗ has SVEP at λ, it follows that i(λ−T ) = 0. From stability
of index by compact perturbations and stability of ascent by commutative
compact perturbations (for the latter, see proof of Theorem 3.2) we have that
i(λ − (T + K)) = 0 and asc(λ − (T + K)) < ∞, so by [1, Theorem 3.4],
des(λ − (T + K)) < ∞. Hence, λ ∈ π0(T + K) ⊂ lim inf π0(T + Kn) ⊂
lim inf σa(T +Kn). □

4. Continuity of spectrum from T to T + K

Question 1. Let T ∈ B(H) be a bounded operator such that σ is continuous
at T . Does it follow that σ is continuous at T +K for all K ∈ K(H)?

Question 2. Let T ∈ B(H) be a bounded operator such that σ is continuous
at T . Does it follow that σ is continuous at T + K for all K ∈ K(H) that
commutes with T?

In general context, the answers to these questions are negatives as shown in
the following example, which is a modification of [3, Example 14.3(ii)].
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Example 4.1. Let αnk = (1 + 1
n )exp(2πi

k
n ) for all n ∈ N and 1 ≤ k ≤ n, and

consider M : ℓ2(N) → ℓ2(N) the diagonal operator defined by

M =


α11

α21

α22

. . .

 .

It is clear that σp(M) = {αnk |n ∈ N, 1 ≤ k ≤ n} where each eigenvalue
has geometry multiplicity one. Let {αm}m∈N be an indexation of {α11, α21,
α22, α31, α32, . . .}. It is not difficult to prove that

λ ∈ ρ(M) = C \ σ(M) ⇔ inf
m

|λ− αm| > 0.

Thus

σ(M) = σp(M) ∪ {λ ∈ C | inf
m

|λ− αm| = 0, and for all m,λ ̸= αm}

= {αm}m∈N ∪ {λ ∈ C | |λ| = 1}.
Let m ∈ N, since inf {|αm − αj | | j ∈ N and j ̸= m} > 0 and for each

{yj}j∈N ∈ R(αm −M), ym = 0. It follows that R(αm −M) is a closed subset
of ℓ2(N). Thus for every m ∈ N, αm is an isolated eigenvalue of M and αm−M
is a semi-Fredholm operator. Therefore {αm}m∈N ⊆ π0(M).

It is easy to see that σlre(M) = {λ ∈ C | |λ| = 1}. Thus
ϕ±(M) = ∅, π0(M) = {αm}m∈N and σw(M) = {λ ∈ C | |λ| = 1}.

From this we obtain automatically by [4, Theorem 3.1] that σ is continuous
at M .

Now, it is clear that M is a normal operator, so by [9, Theorem 4.1], there
is a compact operator K that commutes with T and such that σ(M + K) =
σw(M). Then π0(M +K) = ∅, and also ϕ±(M +K) = ϕ±(M) = ∅. Consider
λ0 ∈ {λ ∈ C | |λ| = 1} and ϵ > 0 such that {λ ∈ C | |λ| = 1} ̸⊆ B(λ0, ϵ). The
set D = C \B(λ0, ϵ) satisfies that

(i) ϕ±(M +K) ⊆ D,
(ii) Every component of π0(M +K) ∪ σlre(M +K) = σlre(M) meets D.

So by [2, Theorem 3.1], there is a sequence of operators {An}n∈N in B(ℓ2(N))
such that An → M +K and for each n ∈ N, σ(An) ⊆ D. Thus, since σ(M +
K) = {λ ∈ C | |λ| = 1}, it follows that

σ(An) ̸→ σ(M +K).

Conclusion: σ is continuous at M and there is a compact operator K that
commutes with M such that σ is not continuous at M +K.

Remark 4.2. The operator M defined in Example 4.1 is not a continuity point
of σw. Indeed, let {An}, K and D as in Example 4.1. Then An −K → M and
for every natural n, σ(An) ⊆ D. Observe that for each n ∈ N,

σw(An −K) = σw(An) ⊆ σ(An) ⊆ D.
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Hence, since σw(M) = {λ ∈ C | |λ| = 1}, it follows that σw(An − K) ̸→
σw(M), i.e., σw is not continuous at M .

In Example 4.1 even when K commutes with T we do not have that σ is
continuous at T +K. Nevertheless if σ is restricted on {T} + K(X), then by
Corollary 3.4, σ is already continuous.

Let ϕ+∞(T ) (and ϕ−∞(T )) be denote respectively the set of λ ∈ ϕ+(T )
(λ ∈ ϕ−(T )) such that i(λ − T ) = ∞ (i(λ − T ) = −∞). We set ϕ±∞(T ) =
ϕ+∞(T )∪ϕ−∞(T ). With these sets, [5, Lemma 3.1] can be extended to general
Banach spaces. In fact:

Lemma 4.3. Let, for λ ̸∈ ϕ±∞(T ), the ball B(λ, ϵ) contains a component of
σlre(T ) for any ϵ > 0. Then for any sequence {Tn} in B(X) that converges in
norm to T ∈ B(X), λ ∈ lim infσlre(Tn).

Theorem 4.4. If T ∈ B(X) is such that for every λ ∈ σlre(T ) \ ϕ±(T ) and
ϵ > 0, the ball B(λ, ϵ) contains a component of σlre(T ), then σ is continuous
at T +K for all K ∈ K(X) such that T +K satisfies Browder’s theorem.

Proof. Let {Tn}n∈N be a sequence in B(X) such that Tn → T + K and let
λ ∈ σ(T +K).

If λ ∈ σlre(T ) \ ϕ±(T ), then by hypothesis and by Lemma 4.3,

λ ∈ lim infσlre(Tn −K).

Since, for every n, σlre(Tn−K) = σlre(Tn), it follows that λ ∈ lim infσlre(Tn) ⊆
lim infσ(Tn).

If λ ∈ ϕ±(T ), then

λ ∈ ϕ+(T ) = ϕ+(T +K) ⊆ lim infσa(Tn) ⊆ lim infσ(Tn)

or
λ ∈ ϕ−(T ) = ϕ−(T +K) ⊆ lim infσs(Tn) ⊆ lim infσ(Tn).

Now suppose that λ ̸∈ σlre(T )∪ϕ±(T ). Then λ ̸∈ σlre(T +K)∪ϕ±(T +K),
this implies that λ − (T + K) ∈ Φ0(X) and so λ ∈ σ(T + K) \ σw(T + K).
Since T +K satisfies Browder’s theorem it follows that λ ∈ π0(T +K). Then,
by Lemma 3.1, λ ∈ lim infπ0(Tn) ⊆ lim infσ(Tn). □

Let H be a Hilbert space, and let A ∈ B(H) be a continuity point of σ. It’s

not difficult to prove from [4, Theorem 3.1] that if λ ∈ σlre(A)\ϕ±(A) ∪ π0(T ),
then for every ϵ > 0, the ball B(λ, ϵ) contains a component of σlre(A). With
this, we have the following corollary.

Corollary 4.5. Let H be a Hilbert space. If σ is continuous at T ∈ B(H) and
K is a compact operator that commutes with T such that

(i) ∂σ(T +K) ∩ [π0(T ) \ π0(T )] = ∅
or

(ii) for all λ ∈ ∂σ(T +K) ∩ [π0(T ) \ π0(T )], λ− T is semi-Fredholm.
Then σ is continuous at T +K.
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Proof. We show first that T +K satisfies Browder’s theorem. By Theorem 2.2
we see that the continuity of σ at T implies that T satisfies Browder’s theorem.
Let λ ∈ σ(T + K) \ σw(T + K). If λ ∈ σ(T ), then λ ∈ σ(T ) \ σw(T ) and
hence λ ∈ π0(T ), thus λ− T is a Weyl operator with finite ascent and descent.
When λ ̸∈ σ(T ) this also is true. Thus since T commutes with K, it follows
that λ − (T +K) is a Weyl operator with finite ascent and descent, therefore
λ ∈ π0(T +K).

Now from an inspection of the proof of Theorem 4.4 we only have to check
that σ(T + K) ∩ π0(T ) ⊆ lim infσ(Tn), where Tn → T + K. Let λ ∈ σ(T +

K) ∩ π0(T ). If λ ∈ intσ(T + K) or λ ∈ π0(T ), then λ ∈ π0(T +K) because

TK = KT . But from Lemma 3.1, π0(T +K) ⊆ lim infσ(Tn), therefore λ ∈
lim infσ(Tn).

Observe that if λ ̸∈ intσ(T + K) and λ ̸∈ π0(T ), then λ ∈ ∂σ(T + K) ∩
[π0(T ) \ π0(T )]. When hypothesi (i) is satisfied, this case can not happen.
Now when hypothesi (ii) is holds, we also have that λ ∈ π0(T + K) and so
λ ∈ lim infσ(Tn). □

Corollary 4.6. Let H be a Hilbert space. If σ is continuous at T ∈ B(H),
then σ is continuous at T +K for all K ∈ K(H) with

intσ(T +K) ⊆ σ(T ) and isoσ(T ) ⊆ isoσ(T +K).

Proof. It is easy to see that int [σ(T +K) \ σw(T +K)] = ∅.
Now, as the previous corollary, σ(T + K) ∩ π0(T ) ⊆ lim infσ(Tn), where

Tn → T +K. Because π0(T ) ⊆ π0(T +K) due to isoσ(T ) ⊆ isoσ(T +K). □
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