References
- N. Argac and H. G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc. 46 (2009), no. 5, 997-1005. https://doi.org/10.4134/JKMS.2009.46.5.997
- M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), no. 1-2, 3-8. https://doi.org/10.1007/BF03323547
- K. I. Beidar, W. S. Martindale, and V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
- C. L. Chuang, GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728. https://doi.org/10.1090/S0002-9939-1988-0947646-4
- M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internt. J. Math. Math. Sci. 15 (1992), 205-206. https://doi.org/10.1155/S0161171292000255
- J. S. Erickson, W. S. Martindale III, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49-63. https://doi.org/10.2140/pjm.1975.60.49
- A. Giambruno and I. N. Herstein, Derivations with nilpotent values, Rend. Circ. Mat. Palermo (2) 30 (1981), no. 2, 199-206. https://doi.org/10.1007/BF02844306
- B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147-1166. https://doi.org/10.1080/00927879808826190
- V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic 17 (1978), 155-168. https://doi.org/10.1007/BF01670115
- C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 731-734. https://doi.org/10.1090/S0002-9939-1993-1132851-9
- T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), no. 8, 4057-4073. https://doi.org/10.1080/00927879908826682
- T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
- W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 176-584.
- M. A. Quadri, M. S. Khan, and N. Rehman, Generalized derivations and commutativity of prime rings, Indian J. Pure Appl. Math. 34 (2003), no. 9, 1393-1396.
- B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), no. 4, 609-614.
Cited by
- Generalized skew derivations on semiprime rings vol.63, pp.5, 2015, https://doi.org/10.1080/03081087.2014.909813
- A note on prime ring with generalized derivation vol.28, pp.3-4, 2017, https://doi.org/10.1007/s13370-016-0465-5
- Power Values of Generalized Derivations with Annihilator Conditions in Prime Rings vol.44, pp.7, 2016, https://doi.org/10.1080/00927872.2015.1065848
- A note on annihilator conditions in prime rings 2017, https://doi.org/10.1007/s12215-017-0305-y
- Generalized derivations with nilpotent, power-central, and invertible values in prime and semiprime rings pp.1532-4125, 2019, https://doi.org/10.1080/00927872.2018.1549664