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DECOMPOSITION THEOREMS OF

LIE OPERATOR ALGEBRAS

Yin Chen and Liangyun Chen

Abstract. In this paper, we introduce a notion of Lie operator alge-
bras which as a generalization of ordinary Lie algebras is an analogy of
operator groups. We discuss some elementary properties of Lie opera-

tor algebras. Moreover, we also prove a decomposition theorem for Lie
operator algebras.

1. Introduction

A (right) operator group is a triple (G,Ω, α) consisting of a group G, a set Ω
called the operator domain and a function α : G×Ω → G such that the mapping
x 7→ α(x, ω) is an endomorphism of G for each ω ∈ Ω. Usually, we write ω(x)
for α(x, ω) and speak of the Ω-group G if the function α is understood. An
operator group with empty operator domain is just an ordinary group. As a
generalization of groups, operator groups have been studied intensively and
effected many research papers (see [1, 2, 3, 4, 5, 9, 11, 12]).

The classical Krull-Remark-Schmidt theorem states that an Ω-group G sat-
isfying chain conditions on normal Ω-subgroups can be decomposed into some
indecomposable Ω-subgroups and up to order of the direct factors, the de-
composition is unique. This theorem was first formulated for finite groups by
Wedderburn in 1909 and its extension to abelian groups with operators, hence
to modules, was given by O. Schmidt in 1928 (see [6], page 115).

There has long been an interest in introducing the concepts and ideas in
group theory into the theory of Lie algebras. For instance, complete Lie alge-
bras come from the concept of complete groups ([7, 8]); the study of varieties
of Lie algebras has closed connection with the theory of group varieties ([10]).

The first purpose of this paper is to introduce a notion of Lie operator alge-
bras which is an analogy of operator groups and discuss their some elementary
properties. Secondly, we are interested in an analogy of Krull-Remark-Schmidt
theorem for Lie operator algebras. We shall prove that there is a kind of direct
decomposition for a Lie operator algebra (see Theorem 3.17). Furthermore, we
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prove that up to order of the direct factors, this decomposition is unique (see
Theorem 4.13).

Definition 1.1. A Lie operator algebra is a triple (g,Ω, α) consisting of a Lie
algebra g, a set Ω called the operator domain and a function α : g × Ω → g

such that the mapping x 7→ α(x, ω) is an endomorphism of g for each ω ∈ Ω.
We shall write ω(x) for α(x, ω) and if α is understood, then g is called a Lie
Ω-algebra.

Remark 1.2. Any Lie algebra can be regarded as a Lie operator algebra with
empty operator domain, so a Lie operator algebra is a generalization of a Lie
algebra.

Remark 1.3. A Lie operator algebra is a Lie algebra with a set of operators
which act on the Lie algebra like endomorphisms. In fact, g is a Lie algebra
if and only if g is a Lie R(Ω)-algebra, where R(Ω) is the ring generated by
endomorphisms in Ω.

This paper is organized as follows. In Section 2, we shall give several basic
concepts, such as Ω-subalgebras, Ω-ideals and Ω-quotient algebras; we shall
develop some basic results for the latter discussions. In Section 3, we discuss
Ω-composition series, chain conditions and Ω-direct decompositions for a Lie Ω-
algebra. We prove that if a Lie Ω-algebra has the descending chain condition
(or ascending chain condition) on Ω-direct factors, then it has an Ω-direct
decomposition. Section 4 is devoted to proving the uniqueness of this Ω-direct
decomposition.

Throughout this paper we assume that all Lie algebras and Lie Ω-algebras
are finite-dimensional over the field of complex numbers.

2. Some examples and properties

A subalgebra h of a Lie algebra g is said to be fully-invariant if f(h) ⊆ h

for each endomorphism f , be characteristic if f(h) ⊆ h for each automorphism
f and be normal if f(h) ⊆ h for each inner automorphism f .

Definition 2.1. Let g be a Lie Ω-algebra and h be a subalgebra (ideal) of g,
then h is called an Ω-subalgebra (ideal) if it is Ω-admissible. That is, ω(x) ∈ h
for all x ∈ h and ω ∈ Ω. The symbol h◁Ω g means that h is an Ω-deal of g.

Let n be an Ω-ideal of g, it is easy to verify that the quotient algebra g/n
becomes a Lie Ω-algebra if we define ω(n+ x) = n+ ω(x).

Definition 2.2. A Lie Ω-algebra is said to be Ω-simple if it is not of dimension
1 and it has no proper nontrivial Ω-ideals. As usual we speak of a simple Lie
algebra if Ω is empty.

Examples of Lie Ω-algebras are as follows:

Example 2.3. Let g be any Lie algebra and let Ω = Endg denote the set of
all endomorphisms of g. Then g is a Lie Ω-algebra if we allow endomorphisms
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to operate on g in the natural way. An Ω-subalgebra of g is simply a fully-
invariant subalgebra.

In the same way, if Ω = (Intg)Autg denotes the set of all (inner) auto-
morphisms of g, then here the Ω-subalgebras are just (normal) characteristic
subalgebras.

Definition 2.4. A Lie homomorphism f : g → h is said to be an Ω-homo-
morphism between Lie Ω-algebras g and h if f(ω(x)) = ω(f(x)) for all x ∈ g

and ω ∈ Ω. The set of all Ω-homomorphism from g to h is written HomΩ(g,h).
Similarly, we can define the Ω-endomorphisms and Ω-automorphisms, and they
form the sets EndΩg and AutΩg respectively.

Remark 2.5. Clearly EndΩg ⊆ Endg and AutΩg ⊆ Autg. The symbol ≃Ω

means Ω-isomorphism.

Definition 2.6. Let g be a Lie Ω-algebra. (An) A (inner) derivation D of g is
called the Ω-(inner) derivation if ωD = Dω for all ω ∈ Ω. We write DerΩg and
adΩg for the sets of all Ω-derivations and Ω-inner derivations of g respectively.

Theorem 2.7. If f : g → h is an Ω-homomorphism of Lie Ω-algebras, then
the mapping f ′ : Kerf + x 7→ f(x) is an Ω-isomorphism from g/Kerf to Imf .

Proof. If x ∈ Kerf , then ω(x) ∈ Kerf since f(ω(x)) = ω(f(x)) = 0. Thus
Kerf is an Ω-ideal of g. Now f ′ is well-defined since f(t + x) = f(x) for all
t ∈ Kerf , and it is clearly an Ω-epimorphism. Also Kerf + x ∈ Kerf ′ if and
only if x ∈ Kerf , that is to say, Kerf ′ = 0; thus f ′ is an Ω-isomorphism. □
Remark 2.8. If n is an Ω-ideal of a Lie Ω-algebra g, the mapping π : x 7→ n+x
is an Ω-epimorphism from g to g/n with kernel n. This π is called the canonical
homomorphism.

Corollary 2.9. Let m and n be two Ω-ideals of a Lie Ω-algebra g and n be
an Ω-ideal of m. Then m/n is an Ω-ideal of g/n and (g/n)/(m/n) ≃Ω g/m.

Proof. Define f : g/n → m/n by f(n + x) = m + x. This is a well-defined
Ω-epimorphism with kernel m/n. This result follows from Theorem 2.7. □

Suppose thatm and n are two Ω-subalgebras of a Lie Ω-algebra g. It is easy
to check that the sum m+ n and intersection m ∩ n are also Ω-subalgebras of
g.

Corollary 2.10. Letm be an Ω-subalgebra and n an Ω-ideal of a Lie Ω-algebra
g. Then n∩m is an Ω-ideal of m and (n∩m)+x 7→ n+x is an Ω-isomorphism
from m/(m ∩ n) to (n+m)/n.

Proof. The function x 7→ n + x is clearly an Ω-epimorphism from m to (n +
m)/n whose kernel is m ∩ n. This result follows from Theorem 2.7. □
Lemma 2.11. Let n ⊂ g be two Lie Ω-algebras and m be an Ω-ideal of n. If
f is an Ω-endomorphism of g, then f(m) is an Ω-ideal of f(n) and m+ h is
an Ω-ideal of n+ h, where h is an Ω-ideal of g.
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Lemma 2.12. Let h,k,g be three Ω-subalgebras of a Lie Ω-algebra and assume
that k ⊆ g. Then (h+ k) ∩ g = (h ∩ g) + k.

Proof. Obviously (h ∩ g) + k ⊆ h + k and (h ∩ g) + k ⊆ g + k = g. Thus
(h ∩ g) + k ⊆ (h+ k) ∩ g. Conversely, let x ∈ (h+ k) ∩ g, x = h+ k ∈ h+ k,
where h ∈ h and k ∈ k. Then h = x − k ∈ g + k = g. Thus h ∈ g ∩ h and
x ∈ (h ∩ g) + k. Hence (h+ k) ∩ g = (h ∩ g) + k. □

Proposition 2.13. Let h1,h2,k1,k2 be Ω-subalgebras of a Lie Ω-algebra g
such that h1◁Ωh2 and k1◁Ωk2. Let cij = hi∩kj. Then (h1+c21)◁Ω(h1+c22)
and (k1+c12)◁Ω (k1+c22). Moreover, the Lie Ω-algebras (h1+c22)/(h1+c21)
and (k1 + c22)/(k1 + c12) are Ω-isomorphic.

Proof. Since k1 ◁Ω k2, we have c21 ◁Ω c22. Since also h1 ◁Ω h2, it follows that
(h1+c21)◁Ω(h1+c22) by Lemma 2.11. Similarly (k1+c12)◁Ω(k1+c22). Apply
Corollary 2.10 with m = c22 and n = h1 + c21, noting that n+m = h1 + c22
and n∩m = c12+c21 by Lemma 2.12. The conclusion is that (h1+c22)/(h1+
c21) ≃Ω c22/(c12 + c21). Similarly (k1 + c22)/(k1 + c12) ≃Ω c22/(c12 + c21),
thus the result follows. □

3. Ω-composition series, chain conditions and Ω-direct
decompositions

Definition 3.1. Let g be a Lie Ω-algebra. An Ω-series (of finite length) in g is
a finite sequence of Ω-subalgebras including {0} and g such that each member
of the sequence is an Ω-ideal of its successor: thus a series can be written

{0} = g0 ◁Ω g1 ◁Ω · · ·◁Ω gl = g.

The gi are called terms and the Ω-quotient algebras gi+1/gi are called factors.
If all the gi are distinct, then integer l is called the length of this Ω-series.
When Ω is empty, we shall simply speak of a series.

Definition 3.2. Let S and T be two Ω-series of a Lie Ω-algebra g. We call S
a refinement of T if every term of T is also a term of S. If there is at least one
term of S which is not a term of T , then S is a proper refinement of T .

Remark 3.3. Clearly the relation of refinement is a partial ordering of the set
of all Ω-series of g.

Definition 3.4. Two Ω-series S and T of a Lie Ω-algebra g are said to be
Ω-isomorphic if there is a bijection from the set of factors of S to the set of
factors of T such that corresponding factors are Ω-isomorphic.

We now have the fundamental result on refinements.

Proposition 3.5. Any two Ω-series of a Lie Ω-algebra possess Ω-isomorphic
refinements.
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Proof. Let {0} = g0◁Ωg1◁Ω · · ·◁Ωgl = g and {0} = c0◁Ωc1◁Ω · · ·◁Ωcm = g

be two Ω-series of g. Define gij = gi + (gi+1 ∩ cj) and cij = cj + (gi ∩ cj+1).
Apply Proposition 2.13 with h1 = gi,h2 = gi+1,k1 = cj , and k2 = cj+1, we
have

gij ◁Ω gij+1, cij ◁Ω ci+1j

and gij+1/gij ≃Ω ci+1j/cij . Hence the series {gij | i = 0, . . . , l − 1, j =
0, . . . ,m} and {cij | i = 0, . . . , l, j = 0, . . . ,m − 1} are Ω-isomorphic refine-
ments of {gi | i = 0, . . . , l} and {cj | j = 0, . . . ,m} respectively. □
Definition 3.6. An Ω-series which has no proper refinements is called an Ω-
composition series.

Remark 3.7. It is clear that we shall arrive at an Ω-composition series of a Lie
Ω-algebra of finite dimension if we repeatedly refine any given series. If Ω is
empty, we speak of a composition series.

The following theorem pointed out that an Ω-composition series can be
recognized by the structure of its factors.

Theorem 3.8. An Ω-series is an Ω-composition series if and only if all its
factors are Ω-simple.

Proof. If some factor h/k of an Ω-series of a Lie Ω-algebra g is not Ω-simple,
it possesses a nontrivial Ω-ideal c/k where k◁Ω c◁Ωh. Adjunction of c to the
series produces a proper refinement, so the initial series is not an Ω-composition
series. Conversely, if an Ω-series is not an Ω-composition series, it has a proper
refinement and there exist consecutive term k◁Ω h and an Ω-subalgebra c of
g with k ◁Ω c ◁Ω h. But c/k is an Ω-ideal of h/k and the latter cannot be
Ω-simple. □
Corollary 3.9. If S is an Ω-composition series and T is any Ω-series of a
Lie Ω-algebra g, then T has a refinement which is an Ω-composition series and
is Ω-isomorphic with S. In particular, if T is an Ω-composition series, it is
Ω-isomorphic with S.
Remark 3.10. Corollary 3.9 indicated that the factors of an Ω-composition
series are independent of the series and constitute a set of invariants of the
Lie algebra, the Ω-composition factors of g. Also all Ω-composition series of g
have the same length, the Ω-composition length of g.

We associate with each Lie Ω-algebra g a set F(g) of Ω-subalgebras such that
if φ : g → h is an Ω-isomorphism, F(h) = {φ(X)|X ∈ F(g)}. For example,
F(g) might consist of all Ω-subalgebras or of all Ω-ideals of g. Obverse that
F(g) is a partially ordered set with respect to set containment, so we may
apply it to the notion of a chain condition.

Definition 3.11. A Lie Ω-algebra g satisfies the ascending chain condition
and the descending chain condition on Ω-subalgebras if the partially ordered
set F(g) satisfies the corresponding chain conditions respectively.
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Example 3.12. 1. Let F(g) be the set of all Ω-subalgebras of a Lie Ω-algebra
g. We obtain the ascending chain condition and descending chain condition
on Ω-subalgebras, denoted by acc-Ω and dcc-Ω. When Ω is empty, we simply
write acc and dcc, and speak of the ascending chain condition and descending
chain condition on subalgebras.

2. Let F(g) be the set of all Ω-ideals; this is the case which concerns us here
since the corresponding properties acc-Ωi and dcc-Ωi are intimately related to
the question of the existence of an Ω-composition series.

Theorem 3.13. A Lie Ω-algebra g has an Ω-composition series if and only if
it satisfies acc-Ωi and dcc-Ωi.

Proof. Suppose that g has an Ω-composition series of length l but that never-
theless there exists an infinite ascending chain h1 ◁Ω h2 ◁Ω · · · of Ω-ideal of
g. Consider the chain {0} = h0 ◁Ω h1 ◁Ω · · · ◁Ω hl+1; since hi is an Ω-ideal
of g, it is an Ω-ideal in hi+1. Hence our chain can be made into an Ω-series of
g by inserting terms of a suitable Ω-series between hi and hi+1 and between
hl and g. The length of the resulting series is at least l+ 1 but cannot exceed
the composition length by Corollary 3.9, a contradiction. In a similar manner
we may prove that g has dcc-Ωi.

Now assume that g has acc-Ωi and dcc-Ωi but does not have an Ω-compo-
sition series. Apply acc-Ωi to the set of proper Ω-ideals of g, noting that
dimension of g is not 1, and select a maximal member g1; then g/g1 is Ω-
simple. Now dimg1 ̸= 1 since g has no Ω composition series, and by acc-Ωi
again we may choose a maximal proper Ω-ideal g2 of g1. Again g1/g2 is Ω-
simple and dimg2 ̸= 1. This process cannot terminate, so there is an infinite
descending chain of Ω-ideals of the form

· · ·◁Ω g2 ◁Ω g1 ◁Ω g0 = g

in contradiction to dcc-Ωi. □

Definition 3.14. Let g be a Lie Ω-algebra. An Ω-subalgebra h is called an
Ω-direct factor of g if there exists an Ω-subalgebra k such that g = h⊕ k. In
this situation, k is called an Ω-direct complement of h in g. If there are no
proper nontrivial Ω-direct factors of g, then g is said to be Ω-indecomposable
(or just indecomposable if Ω = ∅).

Note that Lie Ω-simple algebra is Ω-indecomposable. We consider chain
conditions on the set of direct factors.

Proposition 3.15. For a Lie Ω-algebra g, the ascending chain condition and
the descending chain condition on the Ω-direct factors are equivalent properties.

Proof. Assume that g is a Lie Ω-algebra satisfying the descending chain condi-
tion on the Ω-direct factors; let O be a nonempty set of Ω-direct factors of g.
We will show that O has a maximal element, so that g satisfies the ascending
chain condition on Ω-direct factors.
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Let P be the set of all Ω-subalgebras of g which are direct complement of at
least one element of O. Then P has a minimal element n and g = m ⊕ n for
somem ∈ O. Ifm is not maximal in O, there existsm1 ∈ O such thatm ⊂m1;
then g =m1 ⊕n1 for some n1 ∈ P. Now m1 =m1 ∩ (m⊕n) =m⊕ (m1 ∩n)
by Lemma 2.12, whence g = m1 ⊕ n1 = m ⊕ n1 ⊕ (m1 ∩ n). Intersecting
with n we obtain n = n2 ⊕ (m1 ∩ n) where n2 = (m ⊕ n1) ∩ n. Hence
g = m ⊕ n = (m ⊕ (m1 ∩ n)) ⊕ n2 = m1 ⊕ n2. It follows that n2 ∈ P and
hence that n2 = n by minimality of n in P. Therefore n ⊆ m ⊕ n1 and
g = m ⊕ n = m ⊕ n1 = m1 ⊕ n1. Since m ⊆ m1, we get m = m1, a
contradiction. The converse implication is proved in an analogous way. □
Definition 3.16. A Lie Ω-algebra is said to have an Ω-direct decomposition if
it can be expressed as a direct sum of finitely many nontrivial Ω-indecomposable
subalgebras.

The following theorem is the main result of this section.

Theorem 3.17. If a Lie Ω-algebra g has the descending chain condition (or
ascending chain condition) on the Ω-direct factors, then it has an Ω-direct
decomposition.

Proof. By Theorem 3.13 and Proposition 3.15, g has an Ω-composition series.
Assume that g can not be expressed as a direct sum of finitely many nontrivial
Ω-indecomposable subalgebras. Then g is certainly Ω-decomposable, so the set
O of all proper nontrivial Ω-direct factors of g is not empty. Choose a minimal
element g1 of O and write g = g1 ⊕h1. Then g1 is Ω-indecomposable by min-
imality. Clearly h1 inherits the descending chain condition from g and cannot
be indecomposable. Hence h1 = g2 ⊕ h2 ⊃ g2 where g2 is Ω-indecomposable,
and g = g1 ⊕ g2 ⊕ h2. Repetition of this procedure leads to an infinite de-
scending chain h1 ⊃ h2 ⊃ · · · of Ω-direct factors of g, which cannot exist. By
Proposition 3.15, the result follows. □

4. Uniqueness of Ω-direct decompositions

Definition 4.1. An Ω-endomorphism of a Lie Ω-algebra g is said to be normal
if it commutes with all inner derivations of g.

An Ω-endomorphism π of a Lie Ω-algebra g is said to be normally idempotent
if it is normal and a projection, that is, π = π2. It is clear that π(g) is an
Ω-ideal of g.

Example 4.2. Let g be a Lie Ω-algebra with an Ω-direct decomposition g =
A ⊕ B, and π be the projection into A with respect to this decomposition.
Then π is normally idempotent Ω-endomorphism.

In fact, for any x = x1 + x2, y = y1 + y2, x1, y1 ∈ A and x2, y2 ∈ B, we
have πadx(y) = [x1, y1] = adxπ(y). Moreover, for all ω ∈ Ω, x ∈ g, we have
πω(x) = π(ω(x1) + ω(x2)) = ω(x1) and ω(π(x)) = ω(π(x1 + x2)) = ω(x1). So
πω = ωπ and π is an Ω-homomorphism of g. It is clear that π = π2. Hence π
is normally idempotent.
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The following two lemmas are well-known.

Lemma 4.3. Let g be a Lie algebra. The mapping ad : x 7→ adx defines a
representation of g, where adx : g→ g, y 7→ [x, y] for all y ∈ g.

Lemma 4.4. Let g be a Lie algebra. If ϕ ∈ Autg, then ϕ ·adx ·ϕ−1 = ad(ϕ(x))
for all x ∈ g.

Proposition 4.5. Let g be a Lie Ω-algebra with Ω = Autg. If ϕ is an Ω-
endomorphism of g. Then ϕ is normal if and only if ϕ(x) − x ∈ C(g) for all
x ∈ g.

Proof. For all x ∈ g, ϕ ∈ Autg = Ω, by Lemma 4.4 we have

adx ∈ adΩg⇔ ϕ(adx) = (adx)ϕ = (ad(ϕ(x)))ϕ⇔ adx = ad(ϕ(x)).

That means that adx ∈ adΩg⇔ ϕ(x)−x ∈ Ker(ad) = C(g) by Lemma 4.3. □

Lemma 4.6. If g is a Lie Ω-algebra, then there is a bijection between the set
of all finite Ω-direct decompositions of g and the set of all finite sets of normal
Ω-endomorphisms of g, {π1, . . . , πr} satisfying

(4.1)

{
π1 + · · ·+ πr = 1
πiπj = 0, (i ̸= j).

Proof. Let g = g1 ⊕ · · · ⊕gr be an Ω-direct decomposition of g, where gi (1 ≤
i ≤ r) is an Ω-subalgebra of g, then each x in g is uniquely expressible in the
form x = x1+ · · ·+xr with xi ∈ gi, i = 1, . . . , r. The endomorphism πi defined
by πi(x) = xi is normal: for clearly π2

i = πi and

πi(ady(x)) = [πi(y), πi(x)] = [yi, xi]

= adyi(xi) = ady(xi)

= ady(πi(x))

for all y ∈ g. In addition x = x1+· · ·+xr = (π1+· · ·+πr)(x) and πi(πj(x)) = 0
if i ̸= j. Thus the πi satisfy (4.1).

Conversely, consider some normal Ω-endomorphisms, π1, . . . , πn satisfying
the conditions in (4.1). Then πi = πi(π1 + · · · + πn) = π2

i , so that πi is a
projection. Let gi = πi(g), an Ω-ideal of g. Now π1 + · · · + πn = 1 implies
that g = g1 ⊕ · · · ⊕ gn. Furthermore, if x ∈ gi ∩

∑
j ̸=i gj , then x = πi(y) and

πi(x) = πi(y) = x; but πi(x) = 0 since πi(gj) = 0 if i ̸= j, so in fact x = 0.
Hence g = g1 ⊕ · · · ⊕ gn. □

Lemma 4.7. Let ϕ be a normal Ω-endomorphism of a Lie Ω-algebra g and
suppose that g satisfies the dcc-Ωi and acc-Ωi. Then there exists a positive
integer r such that Imϕr = Imϕr+1 = · · · , and Kerϕr = Kerϕr+1 = · · · . Thus
g = Imϕr ⊕Kerϕr.

Proof. Since ϕ is normal, it is clear that ϕi is also normal and Imϕi is an Ω-
subalgebra of g. Since adxϕi = ϕiadx for all x ∈ g, so adxϕi(y) = ϕiadx(y)
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for all y ∈ g, i.e., [ϕi(y), x] = −ϕi(adx(y)) ∈ ϕi(g). Thus Imϕi is an Ω-
ideal of g. Similarly, Kerϕi is an Ω-ideal of g. Clearly Kerϕ ⊆ Kerϕ2 ⊆ · · ·
and Imϕ ⊇ Imϕ2 ⊇ · · · , so there is a positive integer r such that Kerϕr =
Kerϕr+1 = · · · = m and Imϕr = Imϕr+1 = · · · = n, say. Let x ∈ g; then
ϕr(x) ∈ Imϕr = Imϕ2r and ϕr(x) = ϕ2r(y) for some y ∈ g. Hence x−ϕr(y) ∈m
and x ∈m+n, which shows that g =m+n. Next, if x ∈m∩n, then x = ϕr(y)
with y ∈ g. Therefore 0 = ϕr(x) = ϕ2r(y), whence y ∈ Kerϕ2r = Kerϕr and
x = ϕr(y) = 0. It follows that g =m⊕ n. □
Definition 4.8. An endomorphism ϕ is said to be nilpotent if ϕr = 0 for some
positive integer r.

Proposition 4.9. If g is an indecomposable Lie Ω-algebra satisfying the dcc-
Ωi and acc-Ωi, then a normal Ω-endomorphism of g is either nilpotent or an
Ω-automorphism.

Proof. Let ϕ be a normal Ω-endomorphism of g. By Lemma 4.7, there is an
r > 0 such that g = Imϕr ⊕ Kerϕr. But g is Ω-indecomposable, so either
Imϕr = 0 and ϕr = 0 or Imϕr = g and Kerϕr = 0; in the latter case ϕ is an
Ω-automorphism. □
Definition 4.10. An Ω-endomorphism ϕ of a Lie Ω-algebra g is said to be
central if ϕ(x)− x ∈ C(g) for all x ∈ g.

Proposition 4.11. Let ϕ be an Ω-endomorphism of a Lie Ω-algebra g. Then
the following statements hold:

(1) If ϕ is central, then it is normal.
(2) If ϕ is surjective and normal, then ϕ is central.
(3) If ϕ is an Ω-automorphism, then ϕ is normal if and only if ϕ is central.

Proof. (1) For all x, y ∈ g, ϕ(ady(x))−ady(ϕ(x)) = [ϕ(y)−y, ϕ(x)] = 0 because
ϕ is central. Thus ϕ(ady) = ady(ϕ) and ϕ is an Ω-projection. Proposition 4.5
implies that ϕ is normal.

(2) Since ϕ is surjective and normal, so [ϕ(y), ϕ(x)] = ϕ(ady(x)) = ady(ϕ(x))
= [y, ϕ(x)] for all x, y ∈ g. That is, [ϕ(y) − y, ϕ(x)] = 0. Since g = ϕ(g), this
implies that ϕ(y)− y ∈ C(g) and ϕ is central.

(3) It is immediate from statements (1) and (2). □
Lemma 4.12. Let g be an indecomposable Lie Ω-algebra satisfying the dcc-Ωi
and acc-Ωi. Suppose that ϕ1, . . . , ϕk are normal Ω-endomorphisms of g. If
ϕ1 + · · ·+ ϕk is an Ω-automorphism, then so is at least one ϕi.

Proof. By induction we may assume that k = 2 and α = ϕ1 + ϕ2 is an Ω-
automorphism. Put ψi = α−1ϕi, so that ψ1 + ψ2 = id. Now α is normal since
ϕ1 and ϕ2 are; hence ψ1 and ψ2 are also normal. Suppose that neither ϕ1 nor
ϕ2 is an Ω-automorphism; then neither ψ1 nor ψ2 can be an Ω-automorphism.
By Proposition 4.9, both ψ1 and ψ2 are nilpotent, so ψr

1 = 0 = ψr
2 for some

r > 0. Now ψ1 = id − ψ2, so ψ1ψ2 = ψ2ψ1. Hence id = (ψ1 + ψ2)
2r−1 =
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i=0 Ci

2r−1ψ
i
1ψ

2r−i−1
2 by the binomial theorem. Since either i ≥ r or 2r −

i − 1 ≥ r, we have ψi
1ψ

2r−i−1
2 = 0 for all i. Hence id = 0, which implies that

g = {0} and ϕ1 = id = ϕ2, a contradiction. □

The following theorem is the main result of this section.

Theorem 4.13. Let g be a Lie Ω-algebra satisfying the dcc-Ωi and acc-Ωi. If

g = h1 ⊕ · · · ⊕ hr = n1 ⊕ · · · ⊕ ns

are two Ω-direct decompositions, then r = s and there is a central Ω-auto-
morphism ϕ of g such that, after suitable relabeling of the nj’s if necessary,
ϕ(hi) = ni and g = h1 ⊕ · · · ⊕ hk ⊕ nk+1 ⊕ · · · ⊕ nr for k = 1, . . . , r.

Proof. Assume that for some k satisfying 1 ≤ k ≤ max{r, s} there is an Ω-direct
decomposition g = h1 ⊕ · · · ⊕ hk−1 ⊕ nk ⊕ · · · ⊕ nr. Certainly this is true if
k = 1. Let {σ1, . . . , σr} be the set of projections specifying this decomposition,
and let {π1, . . . , πr} and {ρ1, . . . , ρs} be the corresponding sets of projections
for the decompositions g = h1 ⊕ · · · ⊕ hr and g = n1 ⊕ · · · ⊕ ns. If x ∈ g,
then ρj(x) ∈ nj and σkρj(x) = 0 if j < k. Hence σkρj = 0 if j < k. Since
σk = σk · id = σk · (ρ1 + · · ·+ ρs), we obtain

(4.2) σkρk + σkρk+1 + · · ·+ σkρs = σk.

Consider the restriction of σkρj to hk, certainly a normal Ω-endomorphism
of hk. Now hk inherits the ascending chain and descending chain conditions
from g and the restriction of σk to hk is, of course, id. By (4.2) and Lemma
4.12, some σkρj , k ≤ j ≤ s, is an Ω-automorphism on hk. The nj can be
labeled in such a way that σkρk is an Ω-automorphism on hk.

Let n̄k = ρk(hk) ⊆ nk. Then n̄k ◁ nk since ρk is normal. If ρk(y) = 0
with y ∈ hk, then σkρk(y) = 0 and y = 0, thus ρk maps hk isomorphically
onto n̄k. For the same reason σk maps n̄k monomorphically into hk. Write
ñk = Kerσk∩nk; then nk∩ n̄k = {0}. Also, for x ∈ nk we have σk(x) ∈ hk and
hence σk(x) = σkρk(y) for some y in hk; thus x−ρk(y) ∈ ñk, and x ∈ ñk+ n̄k.
Consequently nk = ñk ⊕ n̄k. But nk is Ω-indecomposable, and n̄k ≃ hk ̸= {0},
hence ñk = {0} and n̄k = nk. It follows that ρk maps hk isomorphically to nk.

Next write ck = n1 ⊕ · · · ⊕ nk−1 ⊕ hk+1 ⊕ · · · ⊕ hr, so that g = ck ⊕ hk.
The proof proceeds by showing that g = ck ⊕ nk. Firstly σk(ck) = {0} and
ck ∩ nk = {0}. Next define ϕ = ρkσk + (id − σk), a normal Ω-endomorphism
of g. If x = y + z where y ∈ ck, z ∈ hk, then ϕ(x) = ϕ(y) + ϕ(z) = y + ρk(z)
since σk(y) = 0 and σk(z) = z. Hence ϕ(x) = 0 implies that y = 0 = ρk(z)
(because ck ∩ nk = {0}); since ρk is monomorphic on nk, we conclude that
y = 0 = z. Hence ϕ is a monomorphism. It follows form Lemma 4.7 that ϕ is
an Ω-automorphism and therefore g = ϕ(g) ⊆ ρkσk(g)+(id−σk)(g) ⊆ nk⊕ck
and g = nk ⊕ ck. This is just to say that g = n1 ⊕ · · · ⊕ nk ⊕ hk+1 ⊕ · · · ⊕ hr,
so far we have proved that there is an Ω-decomposition

g = n1 ⊕ · · · ⊕ nk ⊕ hk+1 ⊕ · · · ⊕ hr
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for 1 ≤ k ≤ max{r, s}, after relabeling the n′
js. If we put k = min{r, s}, it

follows that r = s. We also saw that ρk maps hk isomorphically to nk. Define
α = ρ1π1 + · · · + ρrπr, a normal Ω-endomorphism. Now α(hi) = ρiπi(hi) =
ρi(hi) = ni, so α(g) = g. By Proposition 4.9, α is an Ω-automorphism and so
by Proposition 4.11, it is central. □
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