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APPROXIMATION AND BALANCING ORDERS FOR

TOTALLY INTERPOLATING BIORTHOGONAL

MULTIWAVELET SYSTEMS

Youngwoo Choi and Jaewon Jung

Abstract. We consider totally interpolating biorthogonal multiwavelet
systems with finite impulse response two-band multifilter banks, and
study balancing order conditions of such systems. Based on FIR and

interpolating properties, we show that approximation order condition
is completely equivalent to balancing order condition. Consequently, a
prefiltering can be avoided if a totally interpolating biorthogonal mul-
tiwavelet system satisfies suitable approximation order conditions. An

example with approximation order 4 is provided to illustrate the result.

1. Introduction

The approximation order property (or vanishing moments condition) plays
a crucial role in many application problems. It is well known that in the
scalar wavelet case, if a scaling function has approximation order M ≥ 1,
then the associated low-pass filter/high-pass filter preserves/cancels discrete-
time polynomial signals up to degree M − 1. Such result does not hold in
multiwavelet systems. Furthermore, since a discrete multiwavelet transform
employs multi-input/multi-output filter banks, a prefiltering is a prerequisite
in various practical applications [7, 17, 18, 19]. As an alternative approach,
Lebrun and Vetterli introduced the notion of balancing order for orthogonal
multiwavelet systems [11, 12]. As a general rule if an orthogonal multiwavelet
system is balanced of order M , then it has an approximation order at least M
but the converse is not true in general.

This paper is mainly concerned with relationships between approximation
order and balancing order conditions of compactly supported totally interpo-
lating biorthogonal multiwavelet systems with FIR property and multiplicity
2. We follow the definition of the balancing order generalized to biorthogo-
nal setting [1] and apply it to interpolating biorthogonal multiwavelet systems
with FIR property. It turns out that the concept of approximation order is
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completely equivalent to that of balancing order in this setting. Several ex-
amples of balanced interpolating orthogonal multiwavelet systems [10, 15] are
known. It was shown that any compactly supported interpolating orthogonal
multiscaling function providing approximation order M is balanced of order
M by using Plonka factorization [9]. Our result is based on a different ap-
proach and can be regarded as a biorthogonal analogue. Consequently, as is
mentioned in [1, 11, 18, 19, 21], a prefiltering can be avoided if a totally in-
terpolating biorthogonal multiwavelet system satisfies suitable approximation
order conditions.

This paper is organized as follows: basic notations and elementary facts on
biorthogonal multiwavelet systems with the interpolating property are intro-
duced in Section 2. In Section 3, we introduce the definition of the balancing
order for biorthogonal multiwavelet systems. Based on a simple characteriza-
tion of balancing order condition in terms of the dilation coefficients the main
result is stated and proved in the same section. Finally, to illustrate our result,
an example with approximation order 4 is provided.

2. Preliminaries

We consider a multiresolution analysis (MRA) of multiplicity 2 that is a
nested sequence {Vn} of closed linear subspaces in L2 (R) [3, 6, 16]. A vector

function Φ = (ϕ1, ϕ2)
T
is called a multiscaling function if

Φ (t) = 2
∑
ℓ∈Z

PℓΦ (2t− ℓ)(1)

for some 2× 2 real matrices Pℓ. The Fourier transform is defined by

Φ̂ =
(
ϕ̂1, ϕ̂2

)T
,

where ϕ̂j (ω) :=
∫∞
−∞ ϕj (t) e

−iωtdt with i =
√
−1 and j = 1, 2. Taking the

Fourier transform on (1) yields

Φ̂ (ω) = P
(ω
2

)
Φ̂
(ω
2

)
,

where the two-scale matrix symbol (or the refinement mask) P (ω) correspond-

ing to Φ is given by P (ω) :=
∑

ℓ∈Z Pℓe
−iωℓ. A vector function f ∈ L2 (R)2 is

said to be L2-stable if there are constants 0 < A ≤ B <∞ such that

A
∞∑

k=−∞

b∗
kbk ≤

∥∥∥∥∥
∞∑

k=−∞

b∗
kf (· − k)

∥∥∥∥∥
2

L2

≤ B
∞∑

k=−∞

b∗
kbk

holds for any vector sequence {bk}k∈Z ∈ l2 (Z)2, where ∗ stands for the complex

conjugate transpose [14]. A pair of L2-stable multiscaling functions Φ and Φ̃
associated with matrix refinement equations

Φ (t) = 2
∑
ℓ∈Z

PℓΦ (2t− ℓ) ,
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Φ̃ (t) = 2
∑
ℓ∈Z

P̃ℓΦ̃ (2t− ℓ) ,

are said to be biorthogonal if⟨
Φ (·) , Φ̃ (· − k)

⟩
= δk,0I2,(2)

where ⟨f ,g⟩ :=
∫∞
−∞ f (t)gT (t) dt and δk,ℓ denotes the Kronecker δ-symbol for

k, ℓ ∈ Z [5]. Here and in the sequel, In and 0m×n denote the n × n identity

matrix and the m×n zero matrix, respectively. Let Ψ and Ψ̃ be multiwavelets
associated with Φ and Φ̃, respectively. They are given by

Ψ (t) = 2
∑
ℓ∈Z

QℓΦ (2t− ℓ) ,

Ψ̃ (t) = 2
∑
ℓ∈Z

Q̃ℓΦ̃ (2t− ℓ) ,

where Qℓ and Q̃ℓ are 2 × 2 real matrices. The pair multiwavelets {Ψ, Ψ̃} is
said to be biorthogonal if⟨

Ψ (·) , Ψ̃ (· − k)
⟩

= δk,0I2,(3) ⟨
Φ (·) , Ψ̃ (· − k)

⟩
=

⟨
Φ̃ (·) ,Ψ (· − k)

⟩
= 02×2(4)

for all k ∈ Z. By taking Fourier transform, one can rewrite (2), (3), and (4) as

P (ω) P̃∗ (ω) +P (ω + π) P̃∗ (ω + π) = I2,(5)

Q (ω) Q̃∗ (ω) +Q (ω + π) Q̃∗ (ω + π) = I2,(6)

P (ω) Q̃∗ (ω) +P (ω + π) Q̃∗ (ω + π) = 02×2,(7)

Q (ω) P̃∗ (ω) +Q (ω + π) P̃∗ (ω + π) = 02×2.(8)

We say that a multiscaling function Φ provides approximation order M ≥ 1
if there exist vectors ym

ℓ ∈ R2 such that∑
ℓ∈Z

(ym
ℓ )

T
Φ (t− ℓ) = tm(9)

for all t ∈ R and m = 0, . . . ,M − 1. A multiscaling function Φ is said to be
interpolating if it satisfies the condition[

Φ (n) ,Φ

(
n+

1

2

)]
=

√
2δn,0I2

for n ∈ Z. If each function in a biorthogonal multiwavelet system {Φ, Φ̃,Ψ, Ψ̃}
has interpolating property, then this system is said to be totally interpolating
[21].

In what follows, we consider totally interpolating biorthogonal multiwavelet
systems {Φ, Φ̃,Ψ, Ψ̃} which are FIR two-band multifilter banks. We further

assume that both Φ and Φ̃ are L2-stable and compactly supported. For a
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sequence Ak of 2 × 2 real matrices, we let Aj,ℓ
k := [Ak]j,ℓ for j, ℓ = 1, 2 and

k ∈ Z. Recall the following lemma [21].

Lemma 2.1. If {Φ, Φ̃,Ψ, Ψ̃} is a totally interpolating biorthogonal multi-
wavelet system, then

P (ω) =

(
1
2 p1 (ω)

1
2e

−iω p2 (ω)

)
and P̃ (ω) =

(
1
2 p̃1 (ω)

1
2e

−iω p̃2 (ω)

)
,(10)

Q (ω) =

(
1
2 q1 (ω)

1
2e

−iω q2 (ω)

)
and Q̃ (ω) =

(
1
2 q̃1 (ω)

1
2e

−iω q̃2 (ω)

)
,(11)

where

{
pj (ω) :=

∑
k∈Z P

j,2
k e−iωk, p̃j (ω) :=

∑
k∈Z P̃

j,2
k e−iωk,

qj (ω) :=
∑

k∈Z Q
j,2
k e−iωk, q̃j (ω) :=

∑
k∈Z Q̃

j,2
k e−iωk,

for j = 1, 2.

For convenience, we let cjk := Pj,2
k for j = 1, 2 and k ∈ Z. The following

theorem for FIR property was shown in [21, 2].

Theorem 2.2. Let {Φ, Φ̃} be a biorthogonal pair of interpolating multiscaling

functions with two-scale matrix symbols P (ω) and P̃ (ω) as in (10). If both

p1 (ω) and p2 (ω) are FIR filters, then P̃ (ω) is an FIR filter if and only if

(12) p1 (ω) p2 (ω + π)− p1 (ω + π) p2 (ω) = Ceim
′ω,

that is,

(13)
∑
k∈Z

c12k+1c
2
2ℓ−2k −

∑
k∈Z

c12kc
2
2ℓ−2k+1 =

C

2
δ2ℓ+1,−m′

for some real constant C ̸= 0 and some odd integer m′.

Based on biorthogonality and FIR conditions, we showed the following [2]:

Theorem 2.3. Let Φ (t) and Φ̃ (t) be L2-stable interpolating biorthogonal mul-

tiscaling functions. Assume that P (ω) and P̃ (ω) are both FIR filters. Then

both Φ (t) and Φ̃ (t) provide approximation order M if and only if∑
k∈Z

knc12k =
(−1)n

(
1− 2C (2m′ + 1)

n)
22n+2

,(14)

∑
k∈Z

knc12k+1 =
(−1)n

(
3n + 2C (2m′ + 3)

n)
22n+2

,(15)

∑
k∈Z

knc22k =
1 + 2C (1− 2m′)

n

22n+2
,(16)

∑
k∈Z

knc22k+1 =
(−1)n

(
1− 2C (2m′ + 1)

n)
22n+2

(17)

for n = 0, . . . ,M − 1.
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3. Balancing order

Define the block Toeplitz matrices L : l2 (Z) → l2 (Z) and H : l2 (Z) → l2 (Z)
corresponding to the low-pass analysis and high-pass analysis of Φ and Ψ, i.e.,

L =


· · ·

P−1 P0 P1 P2 P3 · · ·
P−1 P0 P1 P2 P3 · · ·

· · ·

 ,

H =


· · ·

Q−1 Q0 Q1 Q2 Q3 · · ·
Q−1 Q0 Q1 Q2 Q3 · · ·

· · ·

 .

Similarly, define L̃ and H̃ corresponding to the low-pass analysis and high-pass
analysis of Φ̃ and Ψ̃. Lebrun and Vetterli [11, 12] introduced the balancing
order condition for orthogonal multiwavelets. We follow the definition by [1]
generalized to biorthogonal setting. Recall that the biorthogonality provides

2
(
LT HT

)( L̃
H̃

)
= I and 2

(
L
H

)(
L̃T H̃T

)
= I,

i.e.,

2LT L̃+ 2HT H̃ = I and 2LL̃T = I,

2LH̃T = 0, 2HL̃T = 0, and 2HH̃T = I,

where I is the identity block series and 0 is the zero block series, respectively.
For k = 0, . . . ,M−1, we let uk := [. . . , (−2)k, (−1)k, 0k, 1k, 2k, . . .]T . In view of

the biorthogonality property, one can see that 2L̃Tuk = 2−kuk implies Luk =
2kuk. Unlike the orthogonal case, balancing property of Φ or Φ̃ does not lead
to that of Ψ or Ψ̃. In other words, 2L̃Tuk = 2−kuk or Luk = 2kuk does
not imply Huk = 0 or H̃uk = 0. This motivates the following definition of
balancing order for a pair {Φ,Ψ}.

Definition. A pair {Φ,Ψ} is said to be balanced of order M or to have bal-
ancing order M if for k = 0, . . . ,M − 1 the signal uk is preserved by low-pass
branch L and cancelled by the high-pass branch H, i.e., for k = 0, . . . ,M − 1,

Luk = 2kuk and Huk = 0.

From the definition of balancing order and the biorthogonality, we observe

that uT
k

(
2LT L̃+ 2HT H̃

)
= uT

k provides 2L̃Tuk = 2−kuk. Therefore, balanc-

ing of {Φ,Ψ} is equivalent to that of {Φ̃,Ψ}. A simple calculation shows the
following:
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Proposition 3.1. A pair {Φ,Ψ} is balanced of order M if and only if there
exists at least one real number b such that∑

j∈Z

Pj

(
(2j)k

(2j + 1)k

)
= 2k

(
bk

(b+ 1)k

)
,(18)

∑
j∈Z

Qj

(
(2j)k

(2j + 1)k

)
=

(
0
0

)
(19)

for k = 0, . . . ,M − 1.

In general, balancing condition of order M implies approximation property
of orderM , but the converse is not true in general. Therefore, it is interesting to
ask under what circumstances balancing of orderM (discrete time property) is
equivalent to approximation of order M (continuous time property). We prove
the equivalence for totally interpolating biorthogonal multiwavelet systems.

Under the totally interpolating condition, balancing order condition can be
rephrased in terms of two scale coefficients.

Theorem 3.2. Let {Φ, Φ̃,Ψ, Ψ̃} be a totally interpolating biorthogonal multi-
wavelet system. If {Φ,Ψ} is balanced of order M > 1, then the number b must
be zero in (18). Furthermore, (18) can be written as∑

j∈Z

(2j + 1)kc1j =
1

2
δk,0,(20)

∑
j∈Z

(2j + 1)kc2j = 2k−1(21)

for k = 0, . . . ,M − 1.

Proof. Condition (18) is equivalent to

1

2
δk,0 +

∑
j∈Z

c1j (2j + 1)k = 2kbk,(22)

1

2
2k +

∑
j∈Z

c2j (2j + 1)k = 2k(b+ 1)k(23)

for k = 0, . . . ,M − 1. Using (22) and q1(ω) = −p1(ω) from [21], we see∑
j∈Z

[
Q1,1

j (2j)k +Q1,2
j (2j + 1)k

]
=

1

2
δk,0 −

∑
j∈Z

c1j (2j + 1)k

=
1

2
δk,0 −

(
2kbk − 1

2
δk,0

)
= δk,0 − 2kbk

for k = 0, . . . ,M − 1. Thus, condition (19) forces b = 0 when M > 1. One can
easily check that (22) and (23) are equivalent to (20) and (21), respectively. □
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One can easily check (20) and (21) for the examples provided in [21].
We are now ready to state and prove our main result.

Theorem 3.3. Let {Φ, Φ̃} be a pair of biorthogonal interpolating multiscaling

functions with FIR property. Both Φ and Φ̃ provide approximation order M if
and only if both {Φ,Ψ} and {Φ̃, Ψ̃} are balanced of order M .

Proof. It suffices to prove the necessity. Suppose that both Φ and Φ̃ have
approximation order M and P (ω) and P̃ (ω) are both FIR filters in (10). If we
substitute (14) and (15) into (20), the binomial theorem provides the following:∑

j∈Z

(2j + 1)
k
c1j =

∑
j∈Z

(
(4j + 1)kc12j + (4j + 3)kc12j+1

)
=

∑
j∈Z

(
k∑

ℓ=0

(
k

ℓ

)
(4j)ℓc12j +

k∑
ℓ=0

(
k

ℓ

)
(4j)ℓ3k−ℓc12j+1

)

=
k∑

ℓ=0

(
k

ℓ

)
4ℓ
(
1− 2C(2m′ + 1)ℓ

4 · 4ℓ

)
(−1)ℓ

+

k∑
ℓ=0

(
k

ℓ

)
4ℓ3k−ℓ

(
3ℓ + 2C(2m′ + 3)ℓ

4 · 4ℓ

)
(−1)ℓ

=
k∑

ℓ=0

(
k

ℓ

)
1

4

(
(−1)ℓ − 2C(−2m′ − 1)ℓ

)
+

k∑
ℓ=0

(
k

ℓ

)
1

4

(
3k(−1)ℓ + 2C(−2m′ − 3)ℓ3k−ℓ

)
=

1

4
δk,0 −

C

2
(−2m′)k +

1

4
δk,0 +

C

2
(−2m′)k

=
1

2
δk,0

for k = 0, . . . ,M − 1. Substituting (16) and (17) into (21) leads to

∑
j∈Z

(2j + 1)
k
c2j =

k∑
ℓ=0

(
k

ℓ

)
4ℓ
(
1 + 2C(1− 2m′)ℓ

4 · 4ℓ

)

+

k∑
ℓ=0

(
k

ℓ

)
4ℓ3k−ℓ

(
1− 2C(2m′ + 1)ℓ

4 · 4ℓ

)
(−1)ℓ

= 2k−2 +
C

2
(2− 2m′)k + 2k−2 − C

2
(2− 2m′)k

= 2k−1.
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Next, we will show I :=
∑

j∈Z (2j + 1)
k
c̃1j = 1

2δk,0 and II :=
∑

j∈Z (2j + 1)
k
c̃2j

= 2k−1 for k = 0, . . . ,M − 1. Recall the following formulas [2]:

c̃1j =
1

2C
(−1)

m′+j
c2−m′−j and c̃2j = − 1

2C
(−1)

m′+j
c1−m′−j .

Hence, (16) and (17) imply for ℓ = 0, . . . ,M − 1

∑
j∈Z

(
−m′ − 2j − 1

2

)ℓ

c̃12j+1 =
1

2C

(
1 + 2C(1− 2m′)ℓ

4 · 4ℓ

)
,

∑
j∈Z

(
−m′ − 2j − 1

2

)ℓ

c̃12j = − 1

2C

(
(−1)ℓ

(
1− 2C(2m′ + 1)ℓ

)
4 · 4ℓ

)
.

Therefore, we have

I =
∑
j∈Z

(
(4j + 1)k c̃12j + (4j + 3)k c̃12j+1

)
= (−4)k

∑
j∈Z

k∑
ℓ=0

(
k

ℓ

)(
m′

2
+

1

4

)k−ℓ(−m′ − 2j − 1

2

)ℓ

c̃12j

+(−4)k
∑
j∈Z

k∑
ℓ=0

(
k

ℓ

)(
m′

2
− 1

4

)k−ℓ(−m′ − 2j − 1

2

)ℓ

c̃12j+1

= (−4)k
0k

2

=
1

2
δk,0

for k = 0, . . . ,M − 1. Similarly, from (14) and (15) we obtain

II =
(−4)k

2C

k∑
ℓ=0

(
k

ℓ

)(
m′

2
+

1

4

)k−ℓ
(
(−1)ℓ

(
3ℓ + 2C(2m′ + 3)ℓ

)
4 · 4ℓ

)

− (−4)k

2C

k∑
ℓ=0

(
k

ℓ

)(
m′

2
− 1

4

)k−ℓ
(
(−1)ℓ

(
1− 2C(2m′ + 1)ℓ

)
4 · 4ℓ

)

= (−4)k
1

2

(
−1

2

)k

= 2k−1.

Since Qn,2
j = −Pn,2

j for n = 1, 2 and j ∈ Z, we get∑
j∈Z

(2j + 1)
k
Q1,2

j = −1

2
δk,0 and

∑
j∈Z

(2j + 1)
k
Q2,2

j = −2k−1
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Figure 1. ϕ1 and ϕ2
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Figure 2. ϕ̃1 and ϕ̃2

for k = 0, . . . ,M − 1. The interpolating property provides that Q1,1
j = 1

2δj,0

and Q2,1
j = 1

2δj,1 for j ∈ Z. Therefore, we obtain∑
j∈Z

Qj

(
(2j)k

(2j + 1)k

)
=

(
0
0

)
,

i.e., it suffices to use (18) for the balancing order of {Φ,Ψ} in our system.

Hence {Φ,Ψ} is balanced of order M . Similarly, {Φ̃, Ψ̃} is also balanced of
order M . □

Example. Based on a method introduced in [2], one can construct a biorthog-
onal multiwavelet system with approximation order 4:

p1 (ω) = − 1

256
e3iω +

1

64
e2iω +

35

256
eiω

+
15

32
− 35

256
e−iω +

1

64
e−2iω +

1

256
e−3iω,

p2 (ω) =
7

131072
e5iω − 7

32768
e4iω − 181

65536
e3iω − 93

32768
e2iω +

3433

131072
eiω
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Figure 3. ψ1 and ψ2

1.6

0.8

2

0.0

0

−1.6

2.0

1.2

3
0.4

−0.4

1

−0.8

−1.2

−2.0

−1−2−3

1.6

0.8

2

0.0

0

−1.6

2.0

1.2

3
0.4

−0.4

1

−0.8

−1.2

−2.0

−1−2−3

Figure 4. ψ̃1 and ψ̃2

+
2205

16384
+

14845

32768
e−iω − 2205

16384
e−2iω +

3433

131072
e−3iω

+
93

32768
e−4iω − 181

65536
e−5iω +

7

32768
e−6iω +

7

131072
e−7iω,

with m′ = −1 and C = −1
2 . And the associated filters are given by

p̃1 (ω) = −e−iωp2 (−ω + π) , p̃2 (ω) = e−iωp1 (−ω + π) ,

q1 (ω) = −p1 (ω) , q2 (ω) = −p2 (ω) , q̃1 (ω) = −p̃1 (ω) , q̃2 (ω) = −p̃2 (ω) .

The multiscaling functions and wavelets are shown in Figures 1-4. According
to Theorem 3.3, the system has desired balancing order 4.
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