References
- G. D. Birkhoff, Demonstration d'un theoreme elementaire sur les fonctions entieres, C. R. Acad. Sci. Paris 189 (1929), 473-475.
- P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105 pp.
- K. C. Chan and J. H. Shapiro, The cyclic behavior of translation operator on Hilbert spaces of entire functions, Indiana Univ. Math. J. 40 (1991), no. 4, 1421-1449. https://doi.org/10.1512/iumj.1991.40.40064
- C. C. Cowen, Iteration and the solution of functional equations for functions analytic In the unit disk, Trans. Amer. Math. Soc. 265 (1981), no. 1, 69-95. https://doi.org/10.1090/S0002-9947-1981-0607108-9
-
P. L. Duren, Theory of
$H^p$ Spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York, 1970; reprinted by Dover, 2000. - R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288. https://doi.org/10.1090/S0002-9939-1987-0884467-4
- G. Godefroy and J. H. Shapiro, Operators with dense invariant cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269. https://doi.org/10.1016/0022-1236(91)90078-J
- K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139 (2000), no. 1, 47-68. https://doi.org/10.4064/sm-139-1-47-68
- G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 (1952), 72-87. https://doi.org/10.1007/BF02786968
- H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004. https://doi.org/10.2307/2154883
- J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
- J. H. Shapiro, Notes on dynamics of linear operator, http://www.math.msu.edu/shapiro, (2001).
- B. Yousefi and H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3263-3271. https://doi.org/10.1090/S0002-9939-07-08833-8
Cited by
- Hypercyclicity of weighted composition operators on a weighted Dirichlet space vol.59, pp.7, 2014, https://doi.org/10.1080/17476933.2013.809573
- Dynamics of Weighted Composition Operators vol.8, pp.1, 2014, https://doi.org/10.1007/s11785-012-0281-3