$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$-mediated One-pot Reductive Amination of 1,1'-Diacetylferrocene with Aryl Amines

Md. Wasi Ahmad, Sang Yeon Lee, Tae Jeong Kim, and Hong-Seok Kim*
Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, Korea. *E-mail: kimhs@knu.ac.kr

Received August 26, 2011, Accepted September 15, 2011
Key Words : One-pot reductive amination, Chlorotriisopropoxytitanium(IV), 1,1'-Diacetylferrocene, Sodium triacetoxyborohydride

1,1'-Disubstituted-ferrocenes, especially bearing chelating nitrogen atoms, are an important class of ligands in organic synthesis. ${ }^{1,2}$ These nitrogen-containing ferrocenes served as [N, N] bidentate ligands to directly coordinate with transition metals for studying structures and mechanisms. ${ }^{3} 1,1$ '-Diaminoferrocenes undergo cycloplatination to produce cycloplatinated complexes, ${ }^{4}$ which exhibit potential medical and biological activities. ${ }^{4 d}$
To introduce the nitrogen atom in 1,1 '-diacetylferrocene, reductive amination is an important method to target the 1,1'-bis(N-aryl-1-aminoethyl)ferrocene. A successful reductive amination procedure relying on the two-step transformation proceeds via the formation of an imine that is reduced to the corresponding amine by various reducing agents. ${ }^{5-8}$ In addition, the reduction of the ketone or the aldehyde must be slower than imine formation to avoid alcohol as a by-product. When the iminium adduct is difficult to form, activators are employed to facilitate the reaction. There are now known several activators such as $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}^{9}, \mathrm{H}_{3} \mathrm{BO}_{3},{ }^{10} \mathrm{TiCl}_{4},{ }^{2} \mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4},{ }^{11}$ and $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}{ }^{12}$ for the reductive amination of aryl ketones.
Among others, $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ and $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ are expected to be more useful for a direct reductive amination reaction. Replacement of an isopropoxide from $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ with a chlorine atom would increase the Lewis acidity of the reagent facilitating condensation of ketone with amine. The reductive amination of aryl ketone with aryl amine is not an easy transformation, and normally requires two steps; isolation of imine followed by reduction to amine. A twostep reductive amination of acetophenone with various aryl amines has recently been achieved; initial formation of solvent-free acetophenone with anilines at room temperature
in the presence of an activator such as boric acid and/or benzoic acid, and the subsequent reduction of the latter with $\mathrm{NaBH}_{4}{ }^{10}$ The method for the reductive amination of $1,1^{\prime}-$ diacetylferrocene with aryl amine is also known, which requires stepwise reactions and higher reaction temperature $\left(110{ }^{\circ} \mathrm{C}\right) .{ }^{2}$ In this regard, there still remains a need for a mild and one-pot method for the synthesis of a new class of aryl amines.
Herein, we report a $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$-mediated one-pot reductive amination of 1,1'-diacetylferronce with aryl amine under mild conditions. The advantage of the present method makes it unnecessary for the isolation of the intermediate imine. As imine formation is usually the rate-determining step for in situ reductive amination, a series of activators such as $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, and $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ were employed in the reductive amination of acetophenone by $\mathrm{NaBH}(\mathrm{OAc})_{3}$ at room temperature (Table 1, entries 1-3). Dichloromethane among others is the choice of preference as solvent in the formation of $\mathbf{1 a}$ in an excellent yield (entries 3-5) (Figure 1). When the comparison is made between $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$, the former exhibits better reactivity by giving a much higher yield of $\mathbf{1 a}$ in a shorter period of time under milder conditions. For instance, under the same reaction conditions, $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ provided the product in 92% in 2.5 h while $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ exhibited a very poor yield (35\%) in an extended period of reaction time ($\sim 25 \mathrm{~h}$) (entries 2 and 3). Reductive amination of acetophenone with 4-methoxyaniline gave 1b in 98% yield under the same reaction conditions (entry 6). ${ }^{7 \mathrm{c}}$ Here it is interesting to note that 4-nitroaniline, a hard case for reductive amination, yields the product (1c) in as high as 40% (entry 7). ${ }^{13}$

The efficacy of the present protocol was extended to 1,1 '-

1

2

3

Figure 1. Structures of 1, 2, and 3.

Table 1. The reductive amination of acetophenone with anilines ${ }^{a}$

Entry	R	Solvent	Activator	Product	Yield $(\%)^{e}$
1^{b}	H	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathbf{1 a}$	-
2^{b}	H	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}$	$\mathbf{1 a}$	35
3^{c}	H	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}$	$\mathbf{1 a}$	92
4^{c}	H	THF	$\mathrm{TiCl}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}$	$\mathbf{1 a}$	75
5^{c}	H	MeOH	$\mathrm{TiCl}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}$	$\mathbf{1 a}$	70
6^{c}	OCH_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}$	$\mathbf{1 b}$	98
7^{b}	NO_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}$	$\mathbf{1 c}$	40

${ }^{a}$ All reactions were carried out at room temperature. ${ }^{b}$ Reaction was carried out for 25 h . ${ }^{c}$ Reaction was carried out for $2.5 \mathrm{~h} .{ }^{d} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (5 drops), $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ (1.2 equiv), $\mathrm{TiCl}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}$ (1.2 equiv). ${ }^{e}$ Isolated yields.

Scheme 1. $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$-mediated one-pot reductive amination of 1,1'-diacetylferrocene with anilines.
diacetylferrocene as an aryl ketone. The one-pot reductive amination with aryl amines under $\mathrm{NaBH}(\mathrm{OAc})_{3}$ gave 2 as shown in Scheme 1.
The yield of 2 mainly depends on the nature and the position of the substituent on aniline. When acetic acid was used as an activator, no amine product $\mathbf{2}$ was produced. The best result was obtained from the reaction of 1,1 '-diacetylferrocene with 4-methoxyaniline under $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ as shown in Table 2. A typical procedure is described as follows: A mixture of 1,1'-diacetylferrocene (1 equiv), 4-methoxyaniline (6 equiv), and $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ (4 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reacted for 24 h and the resulting mixture was treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (4 equiv) for 1 h at room temperature to give 2b in 82% yield. Similarly, 4-methylaniline and $4-N$ ($B o c$)aminoanline afforded $\mathbf{2 c}$ and $2 d$ in 78% and 59% yields, respectively. Reaction of 1,1'-diacetylferrocene with 4-bromo- and 3-bromoanilines gave the corresponding amines $\mathbf{2 e}$ and $\mathbf{2 f}$ in 55% and 48% yields, respectively. In the case of 2-bromoaniline, due to the steric hindrance, $\mathbf{2 g}$ was provided with a low yield of 40%. The same reaction with 4nitroaniline gave $\mathbf{2 h}$ with a 40% yield. As a consequence of substitution by electron-withdrawing substituents on the aniline ring, these anilines are both poor nucleophiles and weak bases. This retards the initial nucleophilic attack on the carbonyl carbon and leads to a slower overall reaction rate and lower yield. Finally, we examined the reaction of 4,4'diaminodiphenylmethane with 1,1'-diacetylferrocene to provide [2+2]-cyclized product, but we obtained only [1+2] adduct $\mathbf{3}$ in 55\% yield, as shown in Figure 1.

Table 2. The reductive amination of 1,1'-diacetylferrocene with aniline derivatives ${ }^{a}$

Entry	R	Activator ${ }^{\text {b }}$	Product	Yield (\%) ${ }^{\text {c }}$
1	H	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	2 a	-
2	H	$\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$	2a	30
3	H	$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$	2a	76
4	$4-\mathrm{OCH}_{3}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$	2b	82
5	$4-\mathrm{CH}_{3}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$	2 c	78
6	4-BocNHC6 H_{4}	$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$	2d	59
7	$4-\mathrm{Br}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$	2e	55
8	$3-\mathrm{Br}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$	$2 f$	48
9	$2-\mathrm{Br}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$	2 g	40
10	$4-\mathrm{NO}_{2}$	$\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$	2h	40

${ }^{a}$ All reactions were carried out in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 25 h . ${ }^{b} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ (10 drops), $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ (4 equiv), $\mathrm{TiCl}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{3}$ (4 equiv). ${ }^{c}$ Isolated yields.

In summary, we disclosed a protocol for the $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}-$ mediated one-pot reductive amination of acetophenone with anilines in good yield. Moreover, the successful one-pot synthesis of new 1,1'-bis(N-aryl-1-aminoethyl)ferrocene derivatives in good yield has been achieved. This protocol is currently being applied for the reductive amination of 3,7diketosteroid with aryl amines.

Experimental Section

The NMR spectra were recorded on a Bruker AM-400 spectrometer in CDCl_{3} using $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard. The high-resolution mass spectral data were obtained from the Korean Basic Science Institute (at Daegu branch) on a Jeol JMS 700 high resolution mass spectrometer. Flash column chromatography was performed with Merck silica gel 60 (70-230 mesh). Reactions were carried out under an argon atmosphere, and the solutions were washed with brine and dried over anhydrous sodium sulfate. 1,1'-Diacetylferrocene and other reagents were purchased from Aldrich Chemical Co.
N-Phenyl-[1-(phenyl)-ethyl]amine (1a): ${ }^{7 \mathrm{c}}$ A mixture of acetophenone (1 equiv), aniline (1.5 equiv), and 1.2 M $\mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ in hexane (1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred for 2 h at room temperature, and then treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ for 30 min . After the reaction was completed, the solvent was removed. The residue was neutralized with NaHCO_{3} solution, and extracted with ethyl acetate. The organic layer was dried and concentrated to dryness. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, elution with 10% EtOAc in hexane) to give 1a. Yield: 92%; ${ }^{1} \mathrm{H}$ NMR $\delta 1.47\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.95(\mathrm{bs}, 1 \mathrm{H}$, $\mathrm{N} H), 4.45\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar} H), 6.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.06(\mathrm{dd}, J=8.3$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.16-7.34 (m, 5H, ArH).

N -(4-Methoxyphenyl)-[1-(phenyl)-ethyl]amine (1b): ${ }^{7 \mathrm{c}}$ Yield 98%; ${ }^{1} \mathrm{H}$ NMR $\delta 1.38\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.64(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 4.30(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.58(\mathrm{~d}, J=$
$8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.18-7.26$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar} H$).
N-(4-Nitrophenyl)-[1-(phenyl)-ethyl]amine (1c): ${ }^{13}$ Yield 40%; ${ }^{1} \mathrm{H}$ NMR $\delta 1.61\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 4.61(\mathrm{q}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $5.30(\mathrm{bs}, 1 \mathrm{H}, \mathrm{N} H), 6.51(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 6.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.33-7.36(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ar} H), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H)$.
$\mathbf{F e}\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathbf{C H}\left(\mathrm{CH}_{3}\right) \mathrm{NHC}_{6} \mathbf{H}_{5}\right\}_{2}$ (2a): A mixture of 1,1'-diacetylferrocene ($75 \mathrm{mg}, 0.27 \mathrm{mmol}$), $1.2 \mathrm{M} \mathrm{TiCl}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{3}$ in hexane $(1.2 \mathrm{~mL}, 1.11 \mathrm{mmol})$ and aniline $(128 \mathrm{mg}, 1.66$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at room temperature for $24 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc})_{3}(235 \mathrm{mg}, 1.11 \mathrm{mmol})$ was then added and the resulting mixture was stirred for an additional 1 h . After work-up, compound 2a was purified by column chromatography (SiO_{2}, elution with $2 \% \mathrm{EtOAc}$ in hexane). Yield: 76%; Liquid; TLC $\mathrm{R}_{f} 0.72$ (20% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 1.52(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 4.17$ ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Fc}), 4.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Fc}), 4.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 6.66(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=7.8,7.8$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.9,21.0,29.8,31.0,47.8,47.9,66.7$, $67.0,67.5,67.7,68.2,68.5,93.3,114.0,118.0,129.4,129.5$, 146.3, 146.7; HR-FAB MS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{FeN}_{2}(\mathrm{M})^{+}$: 424.1602, found: $m / z 424.1603$.
$\mathbf{F e}\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NHC}_{6} \mathbf{H}_{4} \mathrm{OCH}_{3}-4\right\}_{2}$ (2b): Yield 82%; Liquid; TLC $\mathrm{R}_{f} 0.55$ (33% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 1.50(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.75$ (s, 2H, NH), 3.77 (s, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.16(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Fc}), 4.22(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Fc}), 4.27(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}), 6.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 21.1, 21.3, 48.6, 48.8, 55.7, 55.8, 66.6, 66.8, 67.3, 67.6, 68.0, 68.2, 93.7, 93.8, 114.9, 114.9, 115.3, 115.4, 141.2, 141.3, 152.3, 152.4; HR-FAB MS Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{FeN}_{2} \mathrm{O}_{2}(\mathrm{M})^{+}: 484.1814$, found: $m / z 484.1811$.
$\mathrm{Fe}\left\{\left({ }^{5}{ }^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NHC}_{6} \mathbf{H}_{4} \mathrm{CH}_{3}-4\right\}_{2} \quad$ (2c): Yield 78%; Liquid; TLC $\mathrm{R}_{f} 0.63$ (20% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 1.50(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.10(\mathrm{~s}$, $4 \mathrm{H}, \mathrm{Fc}), 4.15$ (m, 4H, Fc), 4.25 (s, 2H, NH), 4.31 (m, 2H, $\mathrm{CH}), 6.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.5,20.9,21.0,29.8,48.3,66.8,67.0,67.5,67.8$, $68.2,68.4,68.4,93.3,114.4,129.9,129.9,130.0$; HR-FAB MS Calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{FeN}_{2}(\mathrm{M})^{+}: 452.1915$, found: m / z 452.1918.
$\mathbf{F e}\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathbf{- C H}\left(\mathrm{CH}_{3}\right) \mathbf{N H C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{N H B o c}-4\right\}_{\mathbf{2}} \mathbf{(2 d) : ~ Y i e l d}$ 59%; Liquid; TLC $\mathrm{R}_{f} 0.33$ (33\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 1.49$ (d, $J=3.5 \mathrm{~Hz}, 6 \mathrm{H}$), 1.48 (s, 18H, NHBoc), 3.83 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Fc}$), $4.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Fc}), 4.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.42(\mathrm{~s}, 2 \mathrm{H}$, NH), $6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.1,21.2,28.4,28.5,29.7,48.2$, 48.4, 66.6, 66.9, 67.3, 67.6, 68.0, 68.0, 68.3, 80.0, 93.5, 93.6, $114.4,115.7,121.0,121.3,129.0,129.8,142.3,143.4,153.4$.
$\mathrm{Fe}\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Br}-4\right\}_{2}(2 \mathrm{e})$: Yield 55\%; Liquid; TLC $\mathrm{R}_{f} 0.61$ (20% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR δ $1.52(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.17(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Fc})$, 4.20 (m, 4H, Fc), 4.29 (m, 2H, CH), $6.50(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H})$, $7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 21.0,21.1,29.8,31.1$, 47.6, 47.7, 66.7, 67.0, 67.4, 67.7, 68.3, 68.6, 93.4, 93.5, 109.1, 115.1, 115.2, 132.2, 132.2, 146.3; HR-FAB MS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{FeN}_{2}(\mathrm{M})^{+},(\mathrm{M}+2)^{+}$and $(\mathrm{M}+4)^{+}: 579.9814$,
581.9795 and 583.9779, found: $m / z 579.9815,581.9770$ and 583.9742.
$\left.\mathbf{F e}\left\{\left(\eta^{5}-\mathbf{C}_{5} \mathbf{H}_{4}\right)-\mathbf{C H}\left(\mathbf{C H}_{3}\right) \mathbf{N H C}_{6} \mathbf{H}_{4} \mathbf{B r}-\mathbf{3}\right\}_{\mathbf{2}} \mathbf{(2 f}\right):$ Yield 48\%; Liquid; TLC $\mathrm{R}_{f} 0.69$ (20% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR δ 1.49 (d, $J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.63$ (s, 2H, NH), 4.18 (s, 4H, Fc), $4.21(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Fc}), 4.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 6.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.82(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{t} J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.0,21.1,29.8,47.3,47.4,66.7,66.9$, 67.4, 67.7, 68.4, 68.6, 93.3, 93.4, 112.1, 112.2, 113.8, 115.8, $115.8,117.9,121.5,123.1,130.7,130.8,147.9$; HR-FAB MS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{FeN}_{2}(\mathrm{M})^{+},(\mathrm{M}+2)^{+}$and $(\mathrm{M}+4)^{+}$: 579.9815, 581.9795 and 583.9779, found: m / z 579.9816, 581.9818 and 583.9850.
$\left.\mathbf{F e}\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)-\mathbf{C H}\left(\mathrm{CH}_{3}\right) \mathbf{N H C}_{6} \mathbf{H}_{4} \mathbf{B r}-\mathbf{2}\right\}_{2} \mathbf{(2 g}\right)$: Yield 40\%; Liquid; TLC $\mathrm{R}_{f} 0.83$ (20\% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR δ 1.53 (d, $J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 4.32(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Fc})$, 4.37 (m, 4H, Fc), $4.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 6.60-6.66(\mathrm{~m}, 2 \mathrm{H})$, 6.75-6.78 (m, 2H), $7.13(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 20.7,20.9$, 29.7, 46.5, 46.5, 66.8, 67.0, 67.3, 67.5, 68.7, 68.8, 93.7, 109.0, 109.8, 111.8, 115.9, 117.5, 119.4, 128.4, 129.1, 132.5, 132.9, 143.7, 143.9; HR-FAB MS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{FeN}_{2}$ $(\mathrm{M})^{+},(\mathrm{M}+2)^{+}$and $(\mathrm{M}+4)^{+}: 579.9815,581.9795$ and 583.9779, found: $m / z 579.9808,581.9764$ and 583.9751.
$\mathbf{F e}\left\{\left(\eta^{5}-\mathbf{C}_{5} \mathbf{H}_{4}\right)-\mathbf{C H}\left(\mathrm{CH}_{3}\right) \mathbf{N H C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathrm{NO}_{\mathbf{2}} \mathbf{- 4}\right\}_{\mathbf{2}} \quad$ (2h): Yield 40%; Yellow liquid; TLC $\mathrm{R}_{f} 0.63$ (33% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 1.57$ (d, $\left.J=6.3 \mathrm{~Hz}, 6 \mathrm{H}\right), 2.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 4.07$ (s, 4H, Fc), $4.16(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Fc}), 4.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 6.62(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 19.7$, 20.3, 29.9, 30.3, 46.2, 46.3, 49.0, 66.2, 66.3, 66.9, 67.1, 67.6, $67.6,67.9,68.1,91.4,91.4,110.3,112.1,125.6,125.8$, 135.8, 136.4, 152.4, 152.5, 154.1; HR-FAB MS Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FeN}_{4} \mathrm{O}_{4}(\mathrm{M})^{+}: 514.1304$, found: m / z 514.1306.
$\mathbf{F e}\left\{\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}-\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}-4\right)\right\}_{2}\right.$ (3): Yield 55\%; Liquid; TLC $\mathrm{R}_{f} 0.25$ (66% EtOAc in hexane); ${ }^{1} \mathrm{H}$ NMR $\delta 3.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, 4.06 (s, 4H, NHPyCH ${ }_{2} \mathrm{PyNH}_{2}$), $5.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}), 5.77$ (s, $4 \mathrm{H}, \mathrm{Fc}), 6.09$ (m, 4H, Fc), 6.26 (m, 2H, CH), 8.53 (dd, $J=$ $8.3,7.0 \mathrm{~Hz}, 8 \mathrm{H}$ Py), 8.90 (dd, $J=7.8,6.5 \mathrm{~Hz}, 8 \mathrm{H}$ Рy) 9.06 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}_{2}$), $9.34\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.8,21.0,24.3,29.6,47.3,47.4,60.2,66.4,66.7$, $67.1,67.6,67.4,67.9,68.1,93.7,113.3,115.0,115.0,119.9$, $128.3,129.0,129.3,130.9,131.9,135.8,137.9,144.4$, 144.6, 168.2; HR-FAB MS Calcd. for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{FeN}_{4}(\mathrm{M})^{+}$: 634.2761, found: $m / z 634.2760$.

Acknowledgments. This research was supported by the Kyungpook National University Research Fund 2009.

References and Notes

1. (a) Dai, L. X.; Tu, T.; You, S. L.; Deng, W. P.; Hou, X. L. Acc. Chem. Res. 2003, 36, 659. (b) Colacot, T. J. Chem. Rev. 2003, 103, 3101. (c) Sutcliffe, O. B.; Bryce, M. R. Tetrahedron: Asymmetry 2003, 14, 2297.
2. Wang, H.-X.; Gao, R.-Q.; Yang, X.-L.; Wan, L.; Wu, H.-F.; Geng, F.-Y.; Jin, R. Polyhedron 2007, 26, 1037.
3. (a) Lee, S. W. J. Organomet. Chem. 2006, 691, 1347. (b) Tremblay,
D.; Barrett, F. B.; Taylor, N. J. J. Organomet. Chem. 2006, 691, 2044. (c) Weng, Z.; Teo, S.; Koh, L. L.; Andy Hor, T. S. Organometallics 2004, 23, 3603. (d) Gibson, V. C.; Long, N. J.; Marshall, E. L.; Oxford, P. J.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 2001, 1162.
4. (a) Wu, Y. J.; Cui, X. L.; Zhou, N.; Song, M. P.; Yun, H. Y.; Du, C. X.; Zhu, Y. Tetrahedron: Asymmetry 2000, 11, 4877. (b) Bosque, R.; Lopez, C.; Solans, X.; Font-Bardia, M. Organometallics 1999, 18, 1267. (c) McGrouther, K.; Weston, D. K.; Fenby, D.; Robinson, B. H.; Simpson, J. J. Chem. Soc., Dalton Trans. 1999, 1957. (d) Ranatunge-Bandarage, P. R. R.; Robinson, B. H.; Simpson, J. Organometallics 1994, 13, 405.
5. (a) Khan, S. N.; Kim, B. J.; Kim, H.-S. Bioorg. Med. Chem. Lett. 2007, 17, 5139. (b) Grenga, P. N.; Sumbler, B. L.; Beland, F.; Ronny, P. Tetrahedron Lett. 2009, 50, 6658. (c) Markey, M. D.; Fu, Y.; Kelly, T. R. Org. Lett. 2007, 9, 3255. (d) Baxter, E. W.; Reitz, A. B. Org. React. 2002, 59, 1. (e) Lewin, G.; Schaeffer, C. Heterocycles 1998, 48, 171.
6. (a) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849. (b) Abdel-Magid, A. F.; Mehrman, S. J. Org. Process Res. Dev. 2006, 10, 971.
7. (a) Weis, A. L.; Bakos, T.; Alferiev, I.; Zhang, X.; Shao, B.; Kinney, W. A. Tetrahedron Lett. 1999, 40, 4863. (b) Cabral, S.; Hulin, B.; Kawai, M. Tetrahedron Lett. 2007, 48, 7134. (c) Reddy, P. S.; Kanjilal, S.; Sunitha, S.; Prasad, R. B. N. Tetrahedron Lett. 2007, 48, 8807. (d) Alinezhad, H.; Tajbakhsh, M.; Zare, M. Synth. Соттии. 2009, 39, 2907.
8. (a) Khan, S. N.; Bae, S. Y.; Kim, H.-S. Tetrahedron Lett. 2005, 46, 7675. (b) Khan, S. N.; Cho, N.-J.; Kim, H.-S. Tetrahedron Lett. 2007, 48, 5189. (c) Khan, S. N.; Jung, Y. M.; Kim, B. J.; Cho, H.; Lee, J.; Kim, H.-S. Bioorg. Med. Chem. Lett. 2008, 18, 2558. (d) Ahmad, M. W.; Jung, Y. M.; Khan, S. N.; Kim, H.-S. Bull. Korean Chem. Soc. 2009, 30, 2101.
9. Burkhardt, E. R.; Coleridge, B. M. Tetrahedron Lett. 2008, 49, 5152.
10. Cho, B. T.; Kang, S. K. Tetrahedron 2005, 61, 5725.
11. (a) Ramachandran, P. V.; Gagare, P. D.; Sakavuyi, K.; Clark, P. Tetrahedron Lett. 2010, 51, 3167. (b) Gallou, F.; Han, B.; Lu, J.; Weibel, M. S.; Stoessel, A. F. Tetrahedron Lett. 2010, 51, 1419. (c) Salmi, C.; Loncle, C.; Letourneux, Y.; Brunel, J. M. Tetrahedron 2008, 64, 4453. (d) Salmi, C.; Loncle, C.; Vidal, N.; Letourneux, Y.; Brunel, J. M. Eur. J. Med. Chem. 2008, 43, 540. (e) Loncle, C.; Salmi, C.; Letournex, Y.; Brunel, J. M. Tetrahedron 2007, 63, 12968. (f) Di-Cesare, J. C.; White, C. E.; Rasmussen, W. E.; White, M. B.; McComas, C. B.; Craft, L. E. Synth. Commun. 2005, 35, 663. (g) Miriyala, B.; Bhattacharyya, S.; Williamson, J. S. Tetrahedron 2004, 60, 1463. (h) Bhattacharyya, S.; Neidigh, K. A.; Avery, M. A.; Williamson, J. S. Synlett 1999, 1781.
12. (a) Gutierrez, C. D.; Bavetsias, V.; McDonald, E. J. Comb. Chem. 2008, 10, 280. (b) Gutierrez, C. D.; Bavetsias, V.; McDonald, E. Tetrahedron Lett. 2005, 46, 3595.
13. Patel, P. J.; Li, A.-H.; Dong, H.; Korlipara, V. L.; Mulvihill, M. J. Tetrahedron Lett. 2009, 50, 5975.
