DOI QR코드

DOI QR Code

Mechanistic Study of Half-titanocene-based Reductive Pinacol Coupling Reaction

  • Received : 2011.07.13
  • Accepted : 2011.09.14
  • Published : 2011.11.20

Abstract

The reductive pinacol coupling reaction of aldehydes or ketones creating a new C-C bond has been a major tool to produce 1,2-diol compounds. The reaction mechanism is known to be composed of sequential three steps (activation, coupling, and dissociation). In this work, we studied the dissociation step of half-titanocene-based catalytic systems. Cp and $Cp^*$ derivatives of the pinacolato-bridged dinuclear complex were synthesized and evaluated as possible models for intermediates from the coupling step. We monitored $^1H$-NMR spectra of the reaction between the metalla-pinacol intermediates and $D_2O$. New reaction routes of the dissociation step including oxo- and pinacolato-dibridged dinuclear complexes and oxo-bridged multinuclear complexes have been suggested.

Keywords

References

  1. Robertson, G. M. Comprehensive Organic Synthesis, Vol 3., Pergamon: Oxford, 1991; pp 563-611.
  2. Furstner, A. Angew. Chem. Int. Ed. Engl. 1993, 32, 164. https://doi.org/10.1002/anie.199301641
  3. Wirth, T. Angew. Chem. Int. Ed. Engl. 1996, 35, 61. https://doi.org/10.1002/anie.199600611
  4. Nicolaou, K. C.; Liu, J.-J.; Yang, Z.; Ueno, H.; Sorensen, E. J.; Claiborne, C. F.; Guy, R. K.; Hwang, C.-K.; Nakada, M.; Nantermet, P. G. J. Am. Chem. Soc. 1995, 117, 634. https://doi.org/10.1021/ja00107a007
  5. Mukaiyama, T.; Sato, T.; Hanna, J. Chem. Lett. 1973, 1041.
  6. Tyrlik, S.; Wolochowicz, I. Bull. Soc. Chim. Fr. 1973, 2147.
  7. McMurry, J. E.; Fleming, M. P. J. Am. Chem. Soc. 1974, 96, 4708. https://doi.org/10.1021/ja00821a076
  8. McMurry, J. E. Chem. Rev. 1989, 89, 1513. https://doi.org/10.1021/cr00097a007
  9. Furstner, A.; Bogdanovic, B. Angew. Chem. Int. Ed. Engl. 1996, 35, 2442. https://doi.org/10.1002/anie.199624421
  10. Clerici, A.; Clerici, L.; Porta, O. Tetrahadron Lett. 1996, 37, 3035. https://doi.org/10.1016/0040-4039(96)00462-5
  11. Barden, M. C.; Schwartz, J. J. Am. Chem. Soc. 1996, 118, 5484. https://doi.org/10.1021/ja9606485
  12. Bandini, M.; Cozzi, P. G.; Morganti, S.; Umani-Ronchi, A. Tetrahedron Lett. 1999, 40, 1997. https://doi.org/10.1016/S0040-4039(99)00100-8
  13. Lipski, T. A.; Hilfiker, M. A.; Nelson, S. G. J. Org. Chem. 1997, 62, 4566. https://doi.org/10.1021/jo970792o
  14. Aleandri, L. E.; Bogdanovic, B.; Gaidies, A.; Jones, D. J.; Liao, S.; Michalowicz, A.; Rozière, J.; Schott, A. J. Organomet. Chem. 1993, 459, 87. https://doi.org/10.1016/0022-328X(93)86059-Q
  15. Aleandri, L. E.; Becke, S.; Bogdanovic, B.; Jones, D. J.; Roziere, J. J. Organomet. Chem. 1994, 472, 97. https://doi.org/10.1016/0022-328X(94)80197-5
  16. Bogdanovic, B.; Bolte, A. J. Organomet. Chem. 1995, 502, 109. https://doi.org/10.1016/0022-328X(95)05755-E
  17. Huffman, J. C.; Moloy, K. G.; Marsella, J. A.; Caulton, K. G. J. Am. Chem. Soc. 1980, 102, 3009. https://doi.org/10.1021/ja00529a022
  18. Pasquali, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Inorg. Chem. 1981, 20, 349. https://doi.org/10.1021/ic50216a008
  19. Ephritikhine, M.; Maury, O.; Villiers, C.; Lance, M.; Nierlich, M. J. Chem. Soc., Dalton Trans. 1998, 3021.
  20. Ephritikhine, M. Chem. Commun. 1998, 2549.
  21. Villiers, C.; Ephritikhine, M. Chem. Eur. J. 2001, 7, 3043. https://doi.org/10.1002/1521-3765(20010716)7:14<3043::AID-CHEM3043>3.0.CO;2-D
  22. Furstner, A.; Hupperts, A. J. Am. Chem. Soc. 1995, 117, 4468. https://doi.org/10.1021/ja00121a004
  23. Souppe, J.; Danon, L.; Namy, J. L.; Kagan, H. B. J. Organomet. Chem. 1983, 250, 227. https://doi.org/10.1016/0022-328X(83)85053-0
  24. Balsells, R. E.; Frasca, A. R. Tetrahedron 1982, 38, 245. https://doi.org/10.1016/0040-4020(82)80003-3
  25. Furstner, A.; Csuk, R.; Rohrer, C.; Weidmann, H. J. Chem. Soc. Perkin Trans. 1988, 1729.
  26. Yoon, S. W.; Kim, Y.; Kim, S. K.; Kim, S. Y.; Do, Y.; Park, S. Macromol. Chem. Phys. 2011, 212, 785. https://doi.org/10.1002/macp.201000655
  27. SMART, Version 5.0, Data Collection Software, Bruker AXS, Inc.: Madison, WI, 1998.
  28. SAINT, Version 5.0, Data Integration Software, Bruker AXS, Inc.: Madison, WI, 1998.
  29. Sheldrick, G. M. SADABS, A Program for Absorption Correction with the Bruker SMART System, Universitat Gottingen: Germany, 1996.
  30. Sheldrick, G. M. SHELXL-97: Program for the Refinement of Crystal Structures, Universitat Gottingen: Germany, 1997.
  31. Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S. J. Org. Chem. 1976, 41, 260. https://doi.org/10.1021/jo00864a016
  32. Kopf, H.; Grabowski, S.; Voigtlander, R. J. Organomet. Chem. 1981, 216, 185. https://doi.org/10.1016/S0022-328X(00)85759-9
  33. Carofiglio, T.; Floriani, C.; Sgamellotti, A.; Rosi, M.; Chiesi- Villa, A.; Rizzoli, C. J. Chem. Soc., Dalton Trans. 1992, 1081.
  34. Palacios, F.; Royo, P.; Serrano, R.; Balcazar, J. L.; Fonseca, I.; Florecio, F. J. Organomet. Chem. 1989, 375, 51. https://doi.org/10.1016/0022-328X(89)85083-1
  35. Gowik, P.; Klapotke, T.; Pickardt, J. J. Organomet. Chem. 1990, 393, 343. https://doi.org/10.1016/0022-328X(90)85164-T

Cited by

  1. Hydrogenations without Hydrogen: Titania Photocatalyzed Reductions of Maleimides and Aldehydes vol.19, pp.9, 2014, https://doi.org/10.3390/molecules190915324
  2. SiCl and Mg vol.16, pp.2, 2016, https://doi.org/10.1002/tcr.201500277
  3. Alkyne [2 + 2 + 2] Cyclotrimerization Catalyzed by a Low-Valent Titanium Reagent Derived from CpTiX3 (X = Cl, O-i-Pr), Me3SiCl, and Mg or Zn vol.37, pp.23, 2011, https://doi.org/10.1021/acs.organomet.8b00678