DOI QR코드

DOI QR Code

The Sintering Temperature Effect on Electrochemical Properties of LiMn2O4

  • Hwang, Jin-Tae (Department of Materials Science and Engineering, Korea University) ;
  • Park, Sung-Bin (Department of Materials Science and Engineering, Korea University) ;
  • Park, Chang-Kyoo (Department of Materials Science and Engineering, Korea University) ;
  • Jang, Ho (Department of Materials Science and Engineering, Korea University)
  • Received : 2011.07.06
  • Accepted : 2011.09.10
  • Published : 2011.11.20

Abstract

The effect of sintering temperature on the electrochemical property of $LiMn_2O_4$ was investigated. Results showed that the particle size was increased at higher sintering temperatures while the initial capacity was decreased after high temperature sintering. Capacity fading, on the other hand, was suppressed at lower sintering temperatures since the sintering at higher temperatures (${\geq}800^{\circ}C$) increased the Mn ions with a lower oxidation state ($Mn^{+3}$), which induced structural instability during cycling due to dissolution of Mn ions into the electrolyte. In particular, $LiMn_2O_4$ sintered above $830^{\circ}C$ showed severe capacity fading (capacity loss was 38% of initial capacity) by lower coulombic efficiency due to the abnormally increased particle size.

Keywords

References

  1. Fergus, J. W. J. Power Sources 2010, 195, 939. https://doi.org/10.1016/j.jpowsour.2009.08.089
  2. Taniguchi, I.; Lim, C. K.; Song, D.; Wakihara, M. Solid State Ionics 2002, 146, 239. https://doi.org/10.1016/S0167-2738(01)01016-5
  3. Singhal, R.; Resto, O.; Katiyar, R. S. J. Renewable and Sustainable Energy 2009, 1, 023103-1. https://doi.org/10.1063/1.3106302
  4. Yi, T. F.; Hu, X. G.; Dai, C. S.; Gao, K. J. Master Sci. 2007, 42, 3825. https://doi.org/10.1007/s10853-006-0460-6
  5. Wang, X. Q.; Nakamura, H.; Yoshio, M. J. Power Sources 2002, 110, 19. https://doi.org/10.1016/S0378-7753(02)00213-6
  6. Gummow, R. J.; de Kock, A.; Thackeray, M. M. Solid State Ionics 1994, 69, 59. https://doi.org/10.1016/0167-2738(94)90450-2
  7. Jang, D. H.; Shin, Y. J.; Oh, S. M. J. Electrochem. Soc. 1996, 143, 2204. https://doi.org/10.1149/1.1836981
  8. Lee, Y. S.; Hideshima, Y.; Sun, Y. K.; Yoshio, M. J. Electroceramics 2002, 9, 209. https://doi.org/10.1023/A:1023221410721
  9. Yonemura, M.; Yamada, A.; Kobayashi, H.; Tabuchi, M.; Kamiyama, T.; Kawamoto, Y.; Kanno, R. J. Mater. Chem. 2004, 14, 1948. https://doi.org/10.1039/b314810f
  10. Sugiyama, J.; Atsumi, T.; Koiwat, A.; Sasaki, T.; Hioki, T.; Noda, S.; Kamegashira, N. J. Phys: Condens. Matter. 1997, 9, 1729. https://doi.org/10.1088/0953-8984/9/8/006
  11. Park, S. B.; Shin, H. C.; Lee, W. G.; Cho, W. I.; Jang, H. J. Power Sources 2008, 180, 597. https://doi.org/10.1016/j.jpowsour.2008.01.051
  12. Zhang, S. S.; Xu, K.; Jow, T. R. J. Electrochem. Soc. 2002, 149, A1521. https://doi.org/10.1149/1.1516220
  13. Du Pasquier, A.; Blyr, A.; Courjal, P.; Larcher, D.; Amatucci, G.; Gerand, B.; Tarascon, J. M. J. Electrochem. Soc. 1999, 146, 428. https://doi.org/10.1149/1.1391625
  14. Lu, C. H.; Saha, S. K. Materials Science and Engineering B 2001, 79, 247. https://doi.org/10.1016/S0921-5107(00)00530-4
  15. Xia, Y. Y.; Kumada, N.; Yoshio, M. J. Power Sources 2000, 90, 135. https://doi.org/10.1016/S0378-7753(00)00395-5
  16. Tarascon, J. M.; Wang, E.; Shokoohi, F. K.; McKinnon, W. R.; Colson, S. J. Electrochem. Soc. 1991, 138, 2859. https://doi.org/10.1149/1.2085330
  17. Hwang, B. J.; Santhanam, R.; Liu, D. G. J. Power Sources 2001, 101, 86 https://doi.org/10.1016/S0378-7753(01)00657-7
  18. Wei, Y. J.; Kim, K. B.; Chen, G.; Park, C. W. Materials Characterization 2008, 59, 1196. https://doi.org/10.1016/j.matchar.2007.09.013
  19. Aihara, K.; Chaklader, A. C. D. ACTA Metallurgica. 1975, 23, 855. https://doi.org/10.1016/0001-6160(75)90202-3
  20. Hofmann, S.; Csanyi, G.; Ferrari, A. C.; Payne, M. C.; Robertson, J. Physical Review Lett. 2005, 95, 036101. https://doi.org/10.1103/PhysRevLett.95.036101
  21. Jiang, Q.; Zhang, S. H.; Li, J. C. Solid State Commun. 2004, 130, 581. https://doi.org/10.1016/j.ssc.2004.03.033
  22. Barsoum, M. W. Fundamentals of Ceramics; McGraw-Hill Book Companies: St Louis, 1997; pp 331-353.
  23. Jang, S. W.; Lee, H. Y.; Shin, K. C.; Lee, S. M.; Lee, J. K.; Lee, S. J.; Baik, H. K.; Rhee, D. S. J. Power Sources 2000, 88, 274. https://doi.org/10.1016/S0378-7753(00)00374-8
  24. Momchilov, A.; Manev, V.; Nassalevska, A. J. Power Sources 1993, 41, 305. https://doi.org/10.1016/0378-7753(93)80048-T
  25. Park, S. B.; Lee, S. M.; Shin, H. C.; Cho, W. I.; Jang, H. J. Power Sources 2007, 166, 219. https://doi.org/10.1016/j.jpowsour.2006.12.094
  26. Amatucci, G. G.; Schmutz, C. N.; Blyr, A.; Sigala, C.; Gozdz, A. S.; Larcher, D.; Tarascon, J. M. J. Power Source 1997, 69, 11. https://doi.org/10.1016/S0378-7753(97)02542-1
  27. Richard, M. N.; Dahn, J. R. J. Power Sources 1999, 79, 135. https://doi.org/10.1016/S0378-7753(99)00055-5
  28. Son, J. T.; Park, K. S.; Kim, H. G. J. Mater. Science 2004, 39, 3635. https://doi.org/10.1023/B:JMSC.0000030716.52790.96
  29. Nakayama, M.; fNogami, M. Solid State Commun. 2010, 150, 1329. https://doi.org/10.1016/j.ssc.2010.05.006
  30. Shannon, R. D. Actacrystallographica. Section A 1976, 32, 751. https://doi.org/10.1107/S0567739476001551
  31. Raveendranath, K.; Ravi, J.; Jayalekshmi, S.; Rasheed, T. M. A.; Nair, K. P. R. Mater. Sci. Eng. B 2006, 131, 210. https://doi.org/10.1016/j.mseb.2006.04.012
  32. Lu, C. H.; Lin, S. W. J. Power Sources 2001, 97-98, 458. https://doi.org/10.1016/S0378-7753(01)00637-1

Cited by

  1. vol.162, pp.1, 2015, https://doi.org/10.1149/2.0601501jes
  2. Hydrothermal synthesis of Li2MnSiO4: Mechanism and influence of precursor concentration on electrochemical properties vol.19, pp.4, 2013, https://doi.org/10.1007/s12540-013-4029-z