DOI QR코드

DOI QR Code

Isomerization and Dissociation of the Acrylonitrile Radical Cation: A Theoretical Study

  • Received : 2011.08.11
  • Accepted : 2011.08.31
  • Published : 2011.11.20

Abstract

The potential energy surface (PES) for the isomerizations and dissociations of the acrylonitrile radical cation was determined from the CBS-QB3 and CBS-APNO calculations. The Rice-Ramsperger-Kassel-Marcus model calculations were performed based on the PES in order to predict the competitions among the dissociation channels. The mechanisms for the loss of $H^{\bullet}$, $H_2$, $CN^{\bullet}$, HCN, and HNC were proposed. The $C_3H_2N^+$ ion formed by loss of $H^{\bullet}$ was predicted as a mixture of $CH{\equiv}C-C=NH^+$, $CH{\equiv}C-N{\equiv}CH^+$, and $CH_2=C-C{\equiv}N^+$. Furthermore $CH{\equiv}C-C{\equiv}N^{+{\bullet}}$ was formed mainly by a consecutive 1,2-H shift and 1,2-H2 elimination.

Keywords

References

  1. Gardner, F. F.; Winnewisser, G. Astrophys. J. 1975, 195, L127. https://doi.org/10.1086/181726
  2. Snyder, L. E. Proc. Natl. Acad. Sci. 2006, 103, 12243. https://doi.org/10.1073/pnas.0601750103
  3. Petrie, S.; Chirnside, T. J.; Freeman, C. G.; McEwan, M. J. Int. J. Mass Spectrom. Ion Processes 1991, 107, 319. https://doi.org/10.1016/0168-1176(91)80067-W
  4. Petrie, S.; Freeman, C. G.; McEwan, M. J. Mon. Not. R. Astr. Soc. 1992, 257, 438. https://doi.org/10.1093/mnras/257.3.438
  5. Sun, J.; Grützmacher, H. F.; Lifshitz, C. J. Am. Chem. Soc. 1993, 115, 8382. https://doi.org/10.1021/ja00071a054
  6. Ervasti, H. K.; Jobst, K. J.; Gerbaux, P.; Burgers, P. C.; Ruttink, P. J. A.; Terlouw, J. K. Chem. Phys. Let. 2009, 482, 211. https://doi.org/10.1016/j.cplett.2009.10.017
  7. Jobst, K. J.; Hasan, S. A.; Terlouw, J. K. Chem. Phys. Let. 2008, 450, 243. https://doi.org/10.1016/j.cplett.2007.11.039
  8. Ervasti, H. K.; Jobst, K. J.; Burgers, P. C.; Ruttink, P. J. A.; Terlouw, J. K. Int. J. Mass Spectrom. 2007, 262, 88. https://doi.org/10.1016/j.ijms.2006.10.013
  9. Takagi, N.; Fukuzawa, K.; Osamura, Y.; Schaefer III, H. F. Astrophys. J 1999, 525, 791. https://doi.org/10.1086/307914
  10. Heni, M.; Illenberger, E. Int. J. Mass Spectrom. Ion Processes 1986, 73, 127. https://doi.org/10.1016/0168-1176(86)80014-3
  11. Gluch, K.; Cytawa, J.; Michalak, L. Int. J. Mass Spectrom. 2008, 278, 10. https://doi.org/10.1016/j.ijms.2008.07.001
  12. Youn, Y. Y.; Choe, J. C.; Kim, M. S. Am. Soc. Mass Spectrom. 2003, 14, 110. https://doi.org/10.1016/S1044-0305(02)00819-X
  13. Ichihashi, M.; Tsukuda, T.; Nonose, S.; Kondow, T. J. Phys. Chem. 1995, 99, 17354. https://doi.org/10.1021/j100048a008
  14. NIST Chemistry WebBook, NIST Standard Reference Database Number 69.
  15. Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision A. 02; Gaussian, Inc., Wallingford CT, 2009.
  16. Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics: Theory and Experiments; Oxford University Press: New York, 1996.
  17. Beyer, T.; Swinehart, D. R. ACM Commun. 1973, 16, 379. https://doi.org/10.1145/362248.362275
  18. Holmes, J. L.; Aubry, C.; Mayer, P. M. Assigning Structures to Ions in Mass Spectrometry; CRC Press: Boca Raton, 2007.
  19. Barrientos, C.; Redondo, P.; Largo, A. J. Phys. Chem. A 2000, 104, 11541. https://doi.org/10.1021/jp002454o
  20. Uggerud, E. Mass Spectrom. Rev. 1999, 18, 285. https://doi.org/10.1002/(SICI)1098-2787(1999)18:5<285::AID-MAS1>3.0.CO;2-V

Cited by

  1. Reaction Between CH2 and HCCN: A Theoretical Approach to Acrylonitrile Formation in the Interstellar Medium vol.44, pp.2, 2014, https://doi.org/10.1007/s11084-014-9373-6