DOI QR코드

DOI QR Code

Surface Plasmon Enhanced Photoluminescence of Rhodamine B Confined in SBA15

  • Dinakaran, K. (Department of Chemistry, MIT Campus, Anna University) ;
  • Chandramohan, A. (Department of Chemical Engineering, A.C. Tech Campus, Anna University) ;
  • Venkatesan, M.R. (Department of Chemical Engineering, A.C. Tech Campus, Anna University) ;
  • Devaraj, S. (Department of Chemical Engineering, A.C. Tech Campus, Anna University) ;
  • Devi, V. (Department of Chemical Engineering, A.C. Tech Campus, Anna University) ;
  • Alagar, M. (Department of Chemical Engineering, A.C. Tech Campus, Anna University)
  • Received : 2011.05.20
  • Accepted : 2011.08.31
  • Published : 2011.11.20

Abstract

Rhodamine B dye (RB) has been introduced into the mesoporous silica (SBA15) and Ag anchored mesoporous silica by applying solution impregnation method. Surface treatment of SBA15 with 3-aminopropyltrimethoxysilane (APTMS) facilitates selective anchoring of the RB molecules on SBA15. The photoluminescence spectra of RB confined within SBA15 indicates higher emission intensity, than that of the RB solid, particularly in the presence of Ag nanoparticles. The significant enhancement in photoluminescence intensity is attributed to the local enhancement of the optical fields near the molecules by interactions with silver plasmons.

Keywords

References

  1. Yang, P.; Wirnsberger, G.; Huang, H. C.; Cordero, S. R.; Scott, B.;McGehee, M. D.; Deng, T.; Whitesides, G. M.; Chmelka, G. F.; Buratto, S. K.; Stucky, G. D. Science 2000, 287, 465. https://doi.org/10.1126/science.287.5452.465
  2. Ganschow, M.; Wark, M.; Weohrle, D.; Schulz-Ekloff Angew. Chem. Int. Ed. 2000, 39, 161.
  3. Wirnsberger, G.; Stucky, G. D. Chem. Phys. Chem. 2000, 1, 89. https://doi.org/10.1002/1439-7641(20000915)1:2<89::AID-CPHC89>3.0.CO;2-W
  4. O'Connel, R.; Saito, T. Opt. Eng. 1983, 22, 393.
  5. Sastre, R.; Costela, A. Adv. Mater. 1995, 7, 198. https://doi.org/10.1002/adma.19950070222
  6. Narang, U.; Wang, R.; Prasad, P.; Bright, F. J. Phys. Chem. 1994, 98, 17. https://doi.org/10.1021/j100052a005
  7. Beck, J. S. J. Am. Chem. Soc. 1992, 114, 10834. https://doi.org/10.1021/ja00053a020
  8. Shao, Y.; Wang, L.; Zhang, J.; Anpo, M. J. Photochem. Photobiol. A 2006, 180, 59. https://doi.org/10.1016/j.jphotochem.2005.09.018
  9. Schacht, S.; Hou, Q.; Voift-Martin, I. G.; Stucky, G. D.; Schuth, F. Science 1996, 273, 768. https://doi.org/10.1126/science.273.5276.768
  10. Yang, H.; Kuperman, A.; Coombs, N.; Mamicheafara, M.; Ozin, G. A. Nature 1996, 379, 703. https://doi.org/10.1038/379703a0
  11. Huo, Q.; Zhao, D.; Feng, J.; Weston, K.; Buratto, S. K.; Stucky, G. D.; Schacht, S.; Schuth, F. Adv. Mater. 1997, 9, 974. https://doi.org/10.1002/adma.19970091210
  12. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Beck, J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
  13. Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S. Angew. Chem. Int. Ed. 2005, 44, 5083. https://doi.org/10.1002/anie.200501500
  14. Jin, H. Y.; Qiu, H. B.; Sakamoto, Y.; Shu, P.; Terasaki, O.; Che, S. A. Chem.-Eur. J. 2008, 14, 6413. https://doi.org/10.1002/chem.200701988
  15. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S.-Y. J. Am. Chem. Soc. 2004, 126, 13216. https://doi.org/10.1021/ja046275m
  16. Zhang, H. J.; Wu, J.; Zhou, L. P.; Zhang, D. Y.; Qi, L. M. Langmuir 2007, 23, 1107. https://doi.org/10.1021/la062542l
  17. Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S.-Y. Adv. Funct. Mater. 2007, 17, 1225. https://doi.org/10.1002/adfm.200601191
  18. Santra, S.; Zhang, P.; Wang, K.; Tapec, R.; Tan, W. Anal. Chem. 2001, 73, 4988. https://doi.org/10.1021/ac010406+
  19. Shibata, S.; Taniguchi, T.; Yano, T.; Yamane, M. J. Sol-Gel Sci. Technol. 1997, 10, 263. https://doi.org/10.1023/A:1018369200282
  20. He, Q.; Shi, J.; Cui, X.; Zhao, J.; Chen, Y.; Zhou, J. J. Mater. Chem. 2009, 19, 3395. https://doi.org/10.1039/b900357f
  21. Neal, T. D.; Okamoto, K.; Scherer, A. Optic Exp. 2005, 13, 5522. https://doi.org/10.1364/OPEX.13.005522
  22. Kalele, S.; Deshpande, A. C.; Singh, S. B.; Kulkarni, S. K. Bull. Mater. Sci. 2008, 31, 541. https://doi.org/10.1007/s12034-008-0084-3
  23. Jiang, Y.; Wang, H. Y.; Wang, H.; Gao, B. R.; Hao, Y. W.; Jin, Y.; Chen, Q. D.; Sun, H. B. J. Phys. Chem. C 2011, 115, 12636. https://doi.org/10.1021/jp203530e
  24. Mitamura, K.; Imae, T.; Tian, S.; Knoll, W. Langmuir 2008, 24, 2266. https://doi.org/10.1021/la703001y
  25. Shanlin, P.; Wang, Z.; Lewis, J. R. J. Phys. Chem. B 2006, 110, 17383. https://doi.org/10.1021/jp063191m
  26. Jiang, Q.; Wu, Z. Y.; Wang, Y. M.; Cao, Y.; Zhou, C. F.; Zhu, J. H. J. Mater. Chem. 2006, 16, 1536. https://doi.org/10.1039/b516061h
  27. Itakura, T.; Torigoe, K.; Esumi, K. Langmuir 1995, 11, 4129. https://doi.org/10.1021/la00010a079
  28. Foss, C. A.; Hornyak, G. L.; Stockert, J. A.; Martin, C. R. J. Phys. Chem. 1994, 98, 2963. https://doi.org/10.1021/j100062a037
  29. Link, S.; Mohamed, M. B.; El- Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073. https://doi.org/10.1021/jp990183f
  30. Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065. https://doi.org/10.1021/jp0107964
  31. Cepak, V. M.; Martin, C. R. J. Phys. Chem. B 1998, 102, 9985. https://doi.org/10.1021/jp982882i
  32. Marquez, F.; Garcy, H.; Palomares, E.; Fernandez, L.; Corma, A. J. Am. Chem. Soc. 2000, 122, 6520. https://doi.org/10.1021/ja0003066
  33. Zhang, L. Z.; Cheng, P.; Tang, G. Q.; Liao, D. Z. J. Lumin. 2003, 104, 123. https://doi.org/10.1016/S0022-2313(02)00687-7

Cited by

  1. Azobenzene-Functionalized SBA-15 Material for Application in Selective Separation vol.640, pp.3-4, 2014, https://doi.org/10.1002/zaac.201300477