DOI QR코드

DOI QR Code

전해액 첨가제를 이용한 고전계 양극산화의 자기정렬에 관한 연구

Extending the Self-ordering Regime of High-field Anodization by Using an Electrolyte Additive

  • Kim, Min-Woo (Department of Industrial Engineering Chemstry, Pukyong National University) ;
  • Park, Seong-Soo (Department of Industrial Engineering Chemstry, Pukyong National University) ;
  • Sim, Seong-Ju (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Kang, Tae-Ho (KOST Corporation) ;
  • Shin, Yong-Bong (KOST Corporation) ;
  • Ha, Yoon-Cheol (Battery Research Center, Korea Electrotechnology Research Institute)
  • 투고 : 2011.11.05
  • 심사 : 2011.11.25
  • 발행 : 2011.11.30

초록

옥살산 수용액에서의 전기화학적 양극산화에 의한 자기정렬된 알루미나 나노템플레이트의 제조에 있어서 전해액 첨가제를 이용하여 기존 양극산화 법으로는 보고된 바 없는 160~200 V 범위의 자기 정렬 구간을 관찰하였다. 고전계 양극산화와 펄스분리법 및 화학적 기공확장을 거쳐 생성된 자기 정렬구조를 FE-SEM 으로 관찰한 결과 이 전압구간에서의 기공간격과 전압과의 관계는 2.2 nm/V 으로 기존 고전계 양극산화의 결과와 유사하게 나타남을 알 수 있었다. 또한 양극산화막의 성장속도는 약 60 ${\mu}m$/hr로 유사한 기공구조를 얻을 수 있는 인산 수용액에서의 연질 양극산화에 비해 약 30배로 높은 것을 알 수 있었다. 이러한 고찰을 통하여 기공간격 300 nm 이상의 나노템플레이트를 고속으로 제조할 수 있는 조건을 확립하였다.

Using an electrolyte additive, we examined, for the first time, a novel self-ordering regime of 160~200 V in high-field anodization which had been used for a fast fabrication of self-ordered anodic alumina nanotemplate. FE-SEM analyses conducted after the high-field anodization, pulse detachment and chemical widening of pores showed the relationship of 2.2 nm/V in this voltage range, which was identical to the previously reported one in the literature. The growth rate of the alumina film was about 60 um/hr, which was 30 times faster than that of phosphoric acid mild anodization. This study provides a new process for the fast fabrication of nanotemplates with interpore distances larger than 300 nm.

키워드

참고문헌

  1. Y. Wu, G. Cheng, K.Katsov, S. W. Sides, J. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, and G. D. Stucky, 'Composite mesostructures by nano-confinement' Nat. Mater., 3, 816 (2004) https://doi.org/10.1038/nmat1230
  2. A.-P. Li, F. Müller, and U. Gosele, 'Polycrystalline and Monocrystalline Pore Arrays with Large Interpore Distance in Anodic Alumina' Electrochem. Solid-St. Lett., 3, 131 (2000).
  3. I. Mikulskas, S. Juodkazis, R. Tomasi una, and J. G. Dumas, 'Aluminum Oxide Photonic Crystals Grown by a New Hybrid Method' Adv. Mater., 13, 1574 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9
  4. G. Gorokh, A. Mozalev, D. Solovei, V. Khatko, E. Llobet, and X. Correig, 'Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application' Electrochim. Acta, 52, 1771 (2006). https://doi.org/10.1016/j.electacta.2006.01.081
  5. E. Briggs, A. Walpole, P. Wilshaw, M. Karlsson, and E. Palsgard, 'Formation of highly adherent nano-porous alumina on Ti-based substrates: A novel bone implant coating' J. Mater. Sci. Mater. Med., 15, 1021 (2004). https://doi.org/10.1023/B:JMSM.0000042688.33507.12
  6. P. A. M. Darder, M. Hernandez-Velez, E. Manova, and E. Ruiz-Hitzky, 'Encapsulation of enzymes in alumina membranes of controlled pore size' Thin Solid Films, 495, 321 (2006). https://doi.org/10.1016/j.tsf.2005.08.285
  7. G. Dawai, V. Yadavalli, M. Paulose, M. Pishko, and C. Grimes, 'Controlled Molecular Release Using Nanoporous Alumina Capsules' Biomed. Microdevices, 5, 75 (2003). https://doi.org/10.1023/A:1024471618380
  8. G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, 'Highly ordered monocrystalline silver nanowire arrays' J. Appl. Phys., 2, 3243 (2002).
  9. W. Lee, R. Ji, U. Gösele, and K. Nielsch, 'Fast fabrication of long-range ordered porous alumina membranes by hard anodization' Nature Mat., 5, 741 (2006). https://doi.org/10.1038/nmat1717
  10. Y.-C. Ha and D.-Y. Jeong, 'Fast Fabrication of a Highaspect- ratio, Self-ordered Nanoporous Alumina Membrane by Using High-field Anodization' J. Kor. Phys. Soc., 57, 1661 (2010). https://doi.org/10.3938/jkps.57.1661
  11. M. A. Kashi, A. Ramazani, M. Noormohammadi, M. Zarei, and P. Marachi, 'Optimum self-ordered nanopore arrays with 130-270 nm interpore distances formed by hard anodization in sulfuric/oxalic acid mixtures' J. Phys. DAppl. Phys., 40, 7032 (2007). https://doi.org/10.1088/0022-3727/40/22/025
  12. W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gosele, 'Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium' Nat. Nanotechnol., 3, 234 (2008).. https://doi.org/10.1038/nnano.2008.54
  13. A. P. Li, F. Mller, A. Birner, K. Nielshch, and U. Gösele, 'Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina' J. Appl. Phys., 84, 6023 (1998). https://doi.org/10.1063/1.368911
  14. H. Masuda, F. Hasegwa, and S. Ono, 'Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution' J. Electrochem. Soc., 144, L127 (1997). https://doi.org/10.1149/1.1837634
  15. H. Masuda, K. Yada, and A. Osaka, 'Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution' Jpn. J. Appl. Phys., 37, L1340 (1998). https://doi.org/10.1143/JJAP.37.L1340
  16. A. Rajendra, B. J. Parmar, A. K. Sharma, H. Bhojraj, M. M. Nayak, and K. Rajanna, 'Hard anodization of aluminium and its application to sensorics' Surf. Eng., 21, 193 (2005). https://doi.org/10.1179/174329405X50000
  17. S. John, V. Balasubramanian, and B. A. Shenoi, 'Hard anodizing aluminium and its alloys-AC in sulphuric acidsodium sulphate bath' Met. Finish, 82, 33 (1984).
  18. Y. B. Li, M. J. Zheng, and L. Ma, 'High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range' Appl. Phys. Lett. 91, 073109 (2007). https://doi.org/10.1063/1.2772184