DOI QR코드

DOI QR Code

모델 불확실성을 고려한 레이저 피닝 구조물의 피로 수명 예측

Fatigue Life Prediction of a Laser Peened Structure Considering Model Uncertainty

  • 임종빈 (한국항공우주연구원) ;
  • 박정선 (한국항공대학교 항공우주 및 기계공학부)
  • 투고 : 2011.09.28
  • 심사 : 2011.11.22
  • 발행 : 2011.12.01

초록

본 논문에서는 레이저 피닝(Laser peening) 구조물에 대한 피로 수명을 예측하였다. 레이저 피닝에 의해 생성된 압축잔류응력(Compressive residual stress)을 계산하기 위해서 유한 요소 시뮬레이션(Finite element simulation)을 수행하였고, 피로 수명 예측 시에 압축잔류응력 효과를 고려하기 위해서 수정된 Goodman 식을 사용하였다. 또한, S-N 선도 모델 불확실성(Model uncertainty)을 고려한 피로 수명 예측을 위해 부가 적응 인자 접근법(Additive adjustment factor approach)을 적용하여 예측된 피로 수명의 신뢰 구간(Reliable bounds)을 결정하였다.

In this paper, the fatigue life of a laser peened structure was predicted. In order to calculate residual stress induced by laser peening finite element simulation was carried out. Modified Goodman equation was used to consider the effect of compressive residual stress induced by laser peening in fatigue analysis. In addition, additive adjustment factor approach was applied to consider S-N curve model uncertainty. Consequently, the reliable bounds of the predicted fatigue life of the laser peened structure was determined.

키워드

참고문헌

  1. Peyre, P., Berthe, L., Scherpereel, X., and Fabbro, R., "Laser-shock processing of aluminumcoated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behavior," Journal of Material Science, Vol. 33, 1998, pp.1421-1429. https://doi.org/10.1023/A:1004331205389
  2. Clauer, A. H., Fairand, B. P., and Wilcox, B. A., "Laser shock hardening of weld zones in aluminum alloys," Metallurgical and Materials Transactions A, Vol. 8, No.12, 1977, pp.1871-1876. https://doi.org/10.1007/BF02646559
  3. Cheng, G. J., and Shehadeh, M. A., "Dislocation behavior in silicon crystal induced by laser shock peening: A multiscale simulation approach," Scripts Materialia, Vol. 53, Issue 9,2005, pp.1013-1018. https://doi.org/10.1016/j.scriptamat.2005.07.014
  4. Wu, B., Tao, S., and Lei, S., "Numerical modeling of laser shock peening with femtosecond laser pulses and comparisons to experiments," Applied Surface Science, Vol. 256, Issue 13, 2010, pp.4376-4382. https://doi.org/10.1016/j.apsusc.2010.02.034
  5. Warren, A. W., Guo, Y. B., and Chen, S. C., "Massive parallel laser shock peening: Simulation, analysis, and validation," International Journal of Fatigue, Vol. 30, Issue 1, 2008, pp.188-197. https://doi.org/10.1016/j.ijfatigue.2007.01.033
  6. Ding, K., and Ye, L., "FEM Simulation of two sided laser shock peening of thin sections of Ti-6Al-4V alloy," Surface Engineering, Vol. 19, No. 2, 2003, pp.127-133. https://doi.org/10.1179/026708403225002568
  7. Bedi, R., and Chandra, R., "Fatigue-life distributions and failure probability for glass-fiber reinforced polymeric composites," Composites Science and Technology, Vol. 69, Issue 9, 2009, pp.1381-1387. https://doi.org/10.1016/j.compscitech.2008.09.016
  8. Kwon, K., and Frangopol, D. M., "Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data," International Journal of Fatigue, Vol. 32, Issue 8, 2010, pp.1221-1232. https://doi.org/10.1016/j.ijfatigue.2010.01.002
  9. Akama, M., "Bayesian analysis for the results of fatigue test using full-scale models to obtain accurate failure probabilities of the Shinkansen vehicle axle," Reliability Engineering and System Safety, Vol. 75, Issue 3, 2002, pp.321-332. https://doi.org/10.1016/S0951-8320(01)00129-6
  10. Harlow, D. G., and Wei, R. P., "Probability modeling and material microstructure applied to corrosion and fatigue of aluminum and steel alloys," Engineering Fracture Mechanics, Vol. 76, Issue 5, 2009, pp.695-708. https://doi.org/10.1016/j.engfracmech.2008.01.010
  11. Burnham, K. P., and Anderson, D. R., Model selection and multi-inference: a practical informationtheoretic approach, Second Edition, NewYork, NY: Springer, 2002.
  12. Vamos, T., "Epistemic background problems of uncertainty," First International Symposium on Uncertainty Modeling and Analysis, College Park, MD, USA, 1990, pp.96-100.
  13. Nilsen, T., and Aven, T., "Models and model uncertainty in the context of risk analysis," Reliability Engineering and System Safety, Vol. 79, Issue 3, 2003, pp.309-317. https://doi.org/10.1016/S0951-8320(02)00239-9
  14. Stephens, R. I., Fatemi, A., Stephens, R. R., and Fuchs, H. O., Metal Fatigue in Engineering, Second Edition, John Wiley and Sons, Published in Canada, 2001.
  15. Ding, K., and Ye, L., Laser Shock Peening, CRC Press LLC, Published in North America, 2006.
  16. Amarchinta, H. K., Grandhi, R. V., Langer, K., and Stargel, D. S., "Material model validation for laser shock peening process simulation," Modelling and Simulation in Materials Science and Engineering, Vol. 17, No. 1, 2009, 015010. https://doi.org/10.1088/0965-0393/17/1/015010
  17. Bannantine, J. A., Comer, J. J., and Handrock, J. L., Fundamentals of Metal Fatigue Analysis, Prentice Hall, 1989.
  18. 박영철, 장병욱, 임종빈, 이정진, 이수용, 박정선, "틸트 로터형 항공기의 플레퍼론 연결부에 대한 크리깅 기반 피로해석," 한국항공우주학회, 제36권, 제6호, 2008, pp.541-549. https://doi.org/10.5139/JKSAS.2008.36.6.541
  19. Aicher, W., Branger, J., Van-Dijk, G. M., Ertelt, J., Huck, M., De-Jonge, J. B., Lowak, H., Rhomberg, H., Schutz, D., and Schutz, W., Description of a Fighter Aircraft Loading Standard for Fatigue Evaluation, NLR Netherlands, 1976.
  20. Miner, M. A., "Cumulative Damage in Fatigue," Journal of Applied Mechanics, Vol. 12, 1945, pp.A159-A164.
  21. Anthes, R. J., "Modified rainflow counting keeping the load sequence," International Journal of Fatigue, Vol. 19, No. 7, 1997, pp.529-535. https://doi.org/10.1016/S0142-1123(97)00078-9