DOI QR코드

DOI QR Code

WBAN 환경에서 Weighted Fair Queuing 기반의 GTS 타임 슬롯 할당 알고리즘

Algorithm of GTS Time Slots Allocation Based on Weighted Fair Queuing in Environments of WBAN

  • 김경목 (삼육보건대학 의료정보시스템과) ;
  • 정원수 (계원디자인예술대학 디지털콘텐츠군)
  • Kim, Kyoung-Mok (Dept. Medical Information System, Sahmyook Health University) ;
  • Jung, Won-Soo (Dept. of Digital Contents Faculty, Kaywon School of Art and Design)
  • 투고 : 2011.06.30
  • 심사 : 2011.07.30
  • 발행 : 2011.11.30

초록

WBAN은 사람이 착용하는 옷이나 인체 내부 혹은 외부에 있는 여러 장치들을 상호 연결하여 통신할 수 있는 근거리 무선통신 기술이다. WBAN은 기술 적용 분야에 따라 의료용과 비의료용으로 구분할 수 있으며, 주기적인 특성을 가진 의료용 데이터의 경우 GTS 방식을 사용해서 데이터를 전송하여 QoS를 보장한다. 본 논문에서는 WBAN 슈퍼프레임 구조에서 GTS 방식으로 데이터를 전송시 부족한 GTS 타임 슬롯을 해결하는 알고리즘을 제안한다. 코디네이터는 디바이스의 데이터 전송률에 따라 GTS 타임 슬롯을 가변적으로 할당하며, GTS의 개수가 부족하면 GTS 타임 슬롯을 공유하여 사용하도록 할당한다. 제안한 기법의 성능평가를 위해 지연한도와 처리량을 비교하였다. 즉, WBAN 환경에 적합한 WFQ(Weighted Fair Queuing) 스케줄링을 적용하여 상이한 데이터 전송률을 지원하면서 GTS를 할당하는 방법을 제안하였고, 라운드로빈(Round Robin) 스케줄링 방법과 비교하여 처리량은 증가하면서 최대 지연이 감소함을 알 수 있다.

WBAN is short range wireless communication technology which is consists of several small devices close to, attached to or implanted into the human body. WBAN is classified into between medical and non-medical by applications based on technology and medical data with periodic characteristics is used the GTS method for transmitting data to guarantee the QoS. In this paper we proposed algorithm that resolve lack of GTSs while data transmit GTS method in superframe structure of WBAN. Coordinator dynamically allocates GTSs according to the data rate of devices and make devices share GTSs when lack of GTSs. We compared delay bounds, throughput for performance evaluation of the proposed algorithm. In other words, we proposed algorithm adaptive WFQ scheduling that GTS allocation support differential data rate in environments of WBAN. The experiment results show the throughput increased and the maximum delay decreased compared with Round Robin scheduling.

키워드

참고문헌

  1. Won-Soo Jung, Young-Hwan Oh, "Improving Tech niques of MAC Protocol for a Quality Guarantee of Service in WBAN Environment", The Journal of Korea Information and Communications Society, Vol. 35. No. 2, pp.50-58, Feb. 2010.
  2. Bin Zhen, Huan-Bang Li, and Ryuji Kohno, "IEEE Body Area Networks and Medical Implant Commun icatioins," BodyNets2008, pp.24-35, 2008.
  3. Dae-Young Kim, Jinsung Cho, "WBAN meets WBAN: Smart Mobile Space over Wireless Body Area Networks," BTC 2009-Fall, IEEE 70th, pp.1-5, Sep, 2009
  4. IEEE Standard for Information technology- Telecom munications and information exchange between systems- Local and metropolitan area networks-Specific requirements Part 15.4 Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), 2006
  5. H. B. Li, K. Takizawa, B. Zhen, and R. Kohno, "Body Area Network and Its Standardization at IEEE 802.15.MBAN," 16th IST Mobile and Wireless Communications Summit, 2007.
  6. T.Zasowski, F.Althaus, M.Stager, A.Wittneben, G.Troster, "UWB for Noninvasive Wireless Body Area Network: Channel Measurements and Results," IEEE Conf. Ultra Wideband Systems and Technologies, pp.285-289, Nov. 2003.
  7. Anis KOUBAA, Mario ALVES, Eduardo TOVAR, "GTS Allocation Analysis in IEEE 802.15.4 for Real-Time Wireless Sensor Networks," WPDRTS'06, special track on WSNs, 2006.
  8. Anis KOUBAA, Mario ALVES, Eduardo TOVAR, "I-GAME: An Implicit GTS AllocationMechanismin IEEE 802.15.4 for Time-Sensitive Wireless Sensor Networks," ECRTS'06, 2006.