DOI QR코드

DOI QR Code

Phytonutrient Profile of Purple Perilla (Perilla frutescens var. crispa) Seeds

  • Bhandari, Shiva Ram (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Lee, Ju-Kyong (Department of Applied Plant Sciences, Kangwon National University) ;
  • Lee, Young-Sang (Department of Medical Biotechnology, Soonchunhyang University)
  • Received : 2011.06.10
  • Accepted : 2011.06.16
  • Published : 2011.09.30

Abstract

To characterize phytonutrients, the seeds of 12 purple Perilla (Perilla frutescens var. crispa) accessions collected from Korea and Japan were used for quantitative analysis of tocopherols, phytosterols, squalene and fatty acids. The average tocopherol, squalene and phytosterols contents were 12.2 mg $100g^{-1}$, 3.99 mg $100g^{-1}$ and 77.20 mg $100g^{-1}$, respectively. Among 4 tocopherol (T) isomers (${\alpha}$-T, ${\beta}$-T, ${\gamma}$-T, and ${\delta}$-T), ${\gamma}$-T was present in the highest quantity (11.03 mg $100g^{-1}$) with the least variation (CV = 13.7%), while ${\beta}$-T was present in lowest quantity (0.25 mg 1$100g^{-1}$). Compared to campesterol (4.36 mg $100g^{-1}$) and stigmasterol (13.32 mg $100g^{-1}$), ${\beta}$-sitosterol exhibited higher quantity (59.51 mg $100g^{-1}$) with 9.5% of variation. The major fatty acids were unsaturated fatty acids such as linolenic (61.5%), linoleic (17.3%), and oleic (9.9%) acids compared to saturated ones: palmitic (7.6%) and stearic (3.7%) acids. When Korean and Japanese accession were compared, almost no difference in content could be observed, while more variation as evaluated by CV (%) could be observed in Japanese accession in most phytonutrients suggesting wider genetic variation of purple Perilla in Japan. Presence of all above-mentioned phytonutrient compounds strongly suggested health beneficial value of purple Perilla seeds.

Keywords

References

  1. Adhikari, P., K. T. Hwang, J. N. Park, and C. K. Kim. 2006. Policosanol content and composition in Perilla seeds. J. Agric. Food Chem. 54 : 5359-5362. https://doi.org/10.1021/jf060688k
  2. Awad, A. B. and C. S. Fink. 2000. Phytosterols as anticancer dietary components: Evidence and mechanism of action. JN. 130 : 2127-2130.
  3. Awad, A. B., R. L. Von Holtz, J. P. Cone, C. S. Fink, and Y. C. Chen. 1998. Beta sitosterol inhibits growth of HT-29 human colon cancer cells by activating the sphingomyelin cycle. Anticancer Res. 18 : 471-473.
  4. Gabay, O., C. Sanchez, C. Salvat, F. Chevy, M. Breton, G. Nourissat, C. Wolf, C. Jacques, and F. Berenbaum. 2010. Stigmasterol: a phytosterol with potential anti-osteoarthritic properties. Osteoarthritis Cartilage. 18 : 106-116. https://doi.org/10.1016/j.joca.2009.08.019
  5. Hargrove, R. L., T. D. Etherton, T. A. Pearson, E. H. Harrison, and P. M. Kris-Etherton. 2001. Low-fat and high-monounsaturated fat diets decrease human low-density lipoprotein oxidative susceptibility in vitro. JN. 131 : 1758-1763.
  6. Janezic, S. A. and A. V. Rao. 1992. Dose-dependent effects of dietary phytosterol on epithelial cell proliferation of the murine colon. Food Chem. Toxicol. 30 : 611-616. https://doi.org/10.1016/0278-6915(92)90195-Q
  7. Jones, P. J., D. E. Macdougall, F. Ntanios, and C.A. Vanstone. 1997. Dietary phytosterols as cholesterol-lowering agents in humans. Can. J. Physiol. Pharmacol. 75 : 217-227. https://doi.org/10.1139/y97-011
  8. Kim, J. K., N. H. Kim, J. K. Bang, B. K. Lee, C. B. Park, and B. H. Lee. 2000. Fatty acid composition analysis of major oil crops by one-step extraction/methylation method. Korean J. Crop Sci. 45 : 211-215.
  9. Kinsella, I. E. 1991. a-linolenic acid: functions and effects on linoleic acid metabolism and eicosanoid mediated reactions. Adv. Food Nutr. Res. 35 : 1-184. https://doi.org/10.1016/S1043-4526(08)60064-9
  10. Kwon, K. H., K. I. Kim, W. J. Jun, D. H. Shin, H. Y. Cho, and B. S. Hong. 2002. In vitro and in vivo effects of macrophagestimulatory polysachharide from leaves of Perilla frutescens var. crispa. Biol. Pharm. Bull. 25 : 367-371. https://doi.org/10.1248/bpb.25.367
  11. Lee, J.K. and O. Ohnishi. 2001. Geographic differentiation of morphological characters among Perilla crops and their weedy types in East Asia. Breed. Sci. 51 : 247-255. https://doi.org/10.1270/jsbbs.51.247
  12. Lee, J. K., M. Nitta, N. S. Kim, C. H. Park, K. M. Yoon, Y. B. Shin, and O. Ohnishi. 2002. Genetic diversity of Perilla and related weedy types in Korea determined by AFLP analyses. Crop Sci. 42 : 2161-2166. https://doi.org/10.2135/cropsci2002.2161
  13. Lee, Y. S. and M. K. Kim. 2008. Absence of tocotrienol form of vit E in purple Perilla (Perilla frutescens var. acuta Kudo) seeds confirmed by comparative analysis using HPLC and GC. Korean J. Crop Sci. 53 : 115-120.
  14. Longvah, T. and Y. G. Deosthale. 1991. Chemical and Nutritional studies on Hanshi (Perilla frutescens), a traditional oil seed from Northeast India. JAOCS. 68 : 781. https://doi.org/10.1007/BF02662172
  15. Longvah, T., Y. G. Deosthale, P., and U. Kumar. 2000. Nutritional and short term toxicological evaluation of Perilla seed oil. Food Chem. 70 : 13-16. https://doi.org/10.1016/S0308-8146(99)00263-0
  16. Moreda, W., M. C. Perez-Camino, and A. Cert. 2001. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J. Chrom. A. 936 : 159-171. https://doi.org/10.1016/S0021-9673(01)01222-5
  17. Nitta, M. and O. Ohnishi. 1999. Genetic relationships among two Perilla crops, shiso and egoma, and the weedy type revealed by RAPD markers. Genes Genet. Syst. 74 : 43-48. https://doi.org/10.1266/ggs.74.43
  18. Nitta, M., J. K. Lee, and O. Ohnishi. 2003. Asian Perilla crops and their weedy forms: their cultivation, utilization and genetic relationships. Econ. Bot. 57 : 245-253. https://doi.org/10.1663/0013-0001(2003)057[0245:APCATW]2.0.CO;2
  19. Normen, L., M. Johnsson, H. Adersson, Y. Van Gameren, and P. Dutta. 1999. Plant sterols in vegetables and fruits commonly consumed in Sweden. Eur. J. Nutr. 38 : 84-89. https://doi.org/10.1007/s003940050048
  20. Ohkatsu, Y., T. Kajiyama, and Y. Arari. 2001. Antioxidant activities of tocopherols. Polym. Degrad. Stab. 72 : 303-311. https://doi.org/10.1016/S0141-3910(01)00022-2
  21. Park, K. Y., C. S. Kang, Y. S. Lee, Y. H. Lee, and Y. S. Lee. 2004. Tocotrienol and tocopherol content in various plant seeds. Korean J. Crop Sci. 49 : 207-210.
  22. Raicht, R. F., B. I. Cohen, E. P. Fazzini, A. N. Sarwal, and M. Takahashi. 1980. Protective effect of phytosterols against chemically induced colon tumors in rats. Cancer Res. 40 : 403-405.
  23. Rao, C. V., H. L. Newmark, and B. S. Reddy. 1998. Chemopreventive effect of squalene on colon cancer. Carcinogenesis. 19 : 287-290. https://doi.org/10.1093/carcin/19.2.287
  24. Ryan, E., K. Galvin, T. P. O'Connor, and A. R. Maguire. 2007. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods Hu. Nutr. 62 : 85-91. https://doi.org/10.1007/s11130-007-0046-8
  25. Shin, H. S. and S. W. Kim. 1994. Lipid composition of Perilla seeds. JAOCS. 71 : 619. https://doi.org/10.1007/BF02540589
  26. Siriamornpun, S., D. Li, L. Yang, S. Suttajit, and M. Suttajit. 2006. Variation of lipid and fatty acid compositions in Thai Perilla seeds grown at different locations. Songklanakarin J. Sci. Technol. 28 : 17-21.
  27. Weihrauch, J.L, and J. M. Gardner. 1978. Sterol content of foods of plant origin. J. Am. Diet. Assoc. 73 : 39-47.

Cited by

  1. Phenotypic and Genetic Diversity of Local Perilla (Perilla frutescens (L.) Britt.) from Northern Thailand vol.71, pp.2, 2017, https://doi.org/10.1007/s12231-017-9383-1
  2. Characterization of Lipophilic Nutraceutical Compounds in Seeds and Leaves of Perilla frutescens vol.31, pp.2, 2013, https://doi.org/10.7235/hort.2013.12177
  3. A Review on Nutritional Value, Functional Properties and Pharmacological Application of Perilla (Perilla Frutescens L.) vol.12, pp.2, 2011, https://doi.org/10.13005/bpj/1685