DOI QR코드

DOI QR Code

Odor Thresholds and Breathing Changes of Human Volunteers as Consequences of Sulphur Dioxide Exposure Considering Individual Factors

  • Kleinbeck, Stefan (Leibniz Research Center for Working Environment and Human Factors) ;
  • Schaper, Michael (Leibniz Research Center for Working Environment and Human Factors) ;
  • Juran, Stephanie A. (Leibniz Research Center for Working Environment and Human Factors) ;
  • Kiesswetter, Ernst (Leibniz Research Center for Working Environment and Human Factors) ;
  • Blaszkewicz, Meinolf (Leibniz Research Center for Working Environment and Human Factors) ;
  • Golka, Klaus (Leibniz Research Center for Working Environment and Human Factors) ;
  • Zimmermann, Anna (Leibniz Research Center for Working Environment and Human Factors) ;
  • Bruning, Thomas (IPA - Research Institute of Occupational Medicine, German Social Accident Insurance, Ruhr-Universitat Bochum) ;
  • Van Thriel, Christoph (Leibniz Research Center for Working Environment and Human Factors)
  • Received : 2011.07.21
  • Accepted : 2011.10.04
  • Published : 2011.12.30

Abstract

Objectives: Though sulfur dioxide (SO2) is used widely at workplaces, itseffects on humans are not known. Thresholds are reportedwithout reference to gender or age and occupational exposure limits are basedon effects on lung functioning, although localized effects in the upper airways can be expected. This study's aim is to determine thresholds with respect to age and gender and suggests a new approach to risk assessment using breathing reflexes presumably triggered by trigeminal receptors in the upper airways. Methods: Odor thresholds were determined by the ascending method of limits in groups stratified by age and gender. Subjects rated intensities of different olfactory and trigeminal perceptions at different concentrations of $SO_2$. During the presentation of the concentrations, breathing movements were measured by respiratory inductive plethysmography. Results: Neither age nor gender effects were observed for odor threshold. Only ratings of nasal irritation were influenced bygender. A benchmark dose analysis on relative respiratory depth revealed a 10%-deviation from baseline at about 25.27 mg/$m^3$. Conclusion: The proposed new approach to risk assessment appearsto be sustainable. We discuss whether a 10%-deviation of breathingdepth is relevant.

Keywords

References

  1. Arts JH, de Heer C, Woutersen RA. Local effects in the respiratory tract: relevance of subjectively measured irritation for setting occupational exposure limits. Int Arch Occup Environ Health 2006;79:283-98. https://doi.org/10.1007/s00420-005-0044-9
  2. Von Burg R. Sulfur dioxide. J Appl Toxicol 1996;16:365-71. https://doi.org/10.1002/(SICI)1099-1263(199607)16:4<365::AID-JAT360>3.0.CO;2-H
  3. Ruth JH. Odor thresholds and irritation levels of several chemical substances: a review. Am Ind Hyg Assoc J 1986;47:A142-51.
  4. Hazardous Substances Data Bank [Internet]. Bethesda (MD): National Library of Medicine (US); 1998 [cited 2009 Dec 17]. Available from: http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB.
  5. Nagata Y. Measurement of odor threshold by triangle odor bag method. Bull Japan Environ Sanit Cent 2003:118-27.
  6. Doty RL, Hastings L. Neurotoxic exposure and olfactory impairment. Clin Occup Environ Med 2001;1:547-75.
  7. Doty RL. Olfactory dysfunction and its measurement in the clinic and workplace. Int Arch Occup Environ Health 2006;79:268-82. https://doi.org/10.1007/s00420-005-0055-6
  8. Brand G. Olfactory/trigeminal interactions in nasal chemoreception. Neurosci Biobehav Rev 2006;30:908-17. https://doi.org/10.1016/j.neubiorev.2006.01.002
  9. Cometto-Muñiz JE, Cain WS. Trigeminal and olfactory sensitivity: comparison of modalities and methods of measurement. Int Arch Occup Environ Health 1998;71:105-10. https://doi.org/10.1007/s004200050256
  10. Savic I. Processing of odorous signals in humans. Brain Res Bull 2001;54:307-12. https://doi.org/10.1016/S0361-9230(00)00439-1
  11. Shusterman D. Review of the upper airway, including olfaction, as mediator of symptoms. Environ Health Perspect 2002;110(Suppl 4):649-53. https://doi.org/10.1289/ehp.02110s4649
  12. van Thriel C, Schaper M, Kiesswetter E, Kleinbeck S, Juran S, Blaszkewicz M, Fricke HH, Altmann L, Berresheim H, Brüning T. From chemosensory thresholds to whole body exposures-experimental approaches evaluating chemosensory effects of chemicals. Int Arch Occup Environ Health 2006;79:308-21. https://doi.org/10.1007/s00420-005-0057-4
  13. Speizer FE, Frank NR. The uptake and release of SO2 by the human nose. Arch Environ Health 1966;12:725-8.
  14. Sandstrom T. Respiratory effects of air pollutants: experimental studies in humans. Eur Respir J 1995;8:976-95.
  15. Brain JD. The uptake of inhaled gases by the nose. Ann Otol Rhinol Laryngol 1970;79:529-39.
  16. Frank NR, Yoder RE, Brain JD, Yokoyama E. SO2 (35S labeled) absorption by the nose and mouth under conditions of varying concentration and flow. Arch Environ Health 1969;18:315-22.
  17. Badenhorst CJ. Occupational health and safety risks associated with sulphur dioxide. J South African Inst Min Metall 2007;107:299-303.
  18. Andersen IB, Lundqvist GR, Jensen PL, Proctor DF. Human response to controlled levels of sulfur dioxide. Arch Environ Health 1974;28:31-9.
  19. Shusterman D. Toxicology of nasal irritants. Curr Allergy Asthma Rep 2003;3:258-65. https://doi.org/10.1007/s11882-003-0048-z
  20. GESTIS database on hazardous substances [Internet]. Sankt Augustin (Germany): Institute for Occupational Safety and Health of the German Social Accident Insurance; 2008 [cited 2008 Nov 12]. Available from: http://biade.itrust.de/biaen/lpext.dll?f=templates&fn=main-h.htm.
  21. Nielsen GD, Wolkoff P, Alarie Y. Sensory irritation: risk assessment approaches. Regul Toxicol Pharmacol 2007;48:6-18. https://doi.org/10.1016/j.yrtph.2006.11.005
  22. Schaper M. Development of a database for sensory irritants and its use in establishing occupational exposure limits. Am Ind Hyg Assoc J 1993;54:488-544. https://doi.org/10.1080/15298669391355017
  23. Alarie Y, Schaper M, Nielsen GD, Abraham MH. Structureactivity relationships of volatile organic chemicals as sensory irritants. Arch Toxicol 1998;72:125-40. https://doi.org/10.1007/s002040050479
  24. Alarie Y. Dose-response analysis in animal studies: prediction of human responses. Environ Health Perspect 1981;42:9-13. https://doi.org/10.1289/ehp.81429
  25. Bos PM, Busschers M, Arts JH. Evaluation of the sensory irritation test (Alarie test) for the assessment of respiratory tract irritation. J Occup Environ Med 2002;44:968-76. https://doi.org/10.1097/00043764-200210000-00017
  26. Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A 2010;107:3210-5. https://doi.org/10.1073/pnas.0911934107
  27. Taylor-Clark TE, Kiros F, Carr MJ, McAlexander MA. Transient receptor potential ankyrin 1 mediates toluene diisocyanate- evoked respiratory irritation. Am J Respir Cell Mol Biol 2009;40:756-62. https://doi.org/10.1165/rcmb.2008-0292OC
  28. Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, Undem BJ. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 2008;586:1595-604. https://doi.org/10.1113/jphysiol.2007.148379
  29. Walker JC, Kendal-Reed M, Hall SB, Morgan WT, Polyakov VV, Lutz RW. Human responses to propionic acid. II. Quantification of breathing responses and their relationship to perception. Chem Senses 2001;26:351-8. https://doi.org/10.1093/chemse/26.4.351
  30. Grunstein MM, Hazucha M, Sorli MH, Milic-Emili J. Effect of SO2 on control of breathing in anesthetized cats. J Appl Physiol 1977;43:844-51.
  31. Arzi A, Sela L, Green A, Givaty G, Dagan Y, Sobel N. The influence of odorants on respiratory patterns in sleep. Chem Senses 2010;35:31-40. https://doi.org/10.1093/chemse/bjp079
  32. Lawther PJ. Effect of inhalation of sulphur dioxide on respiration and pulse-rate in normal subjects. Lancet 1955;269:745-8.
  33. Burgess KR, Whitelaw WA. Effects of nasal cold receptors on pattern of breathing. J Appl Physiol 1988;64:371-6. https://doi.org/10.1063/1.342489
  34. Crump K, Bruce A, Elaine F. The use of the benchmark dose approach in health risk assessment. Washington, DC: Environmental Protection Agency (US) Risk Assessment Forum; 1995. Report No.: EPA/630/R-94/007. 93 p.
  35. Benchmark dose (BMD) methodology [Internet]. Washington, DC: Environmental Protecton Agency (US); 2009 [cited 2009 Jul 17]. Available from: http://www.epa.gov/NCEA/bmds/bmds_training/methodology/intro.htm.
  36. van Thriel C, Blaszkewicz M, Schaper M, Juran SA, Kleinbeck S, Kiesswetter E, Wrbitzky R, Stache J, Golka K, Bader M. Chemosensory effects during acute exposure to N-methyl- 2-pyrrolidone (NMP). Toxicol Lett 2007;175:44-56. https://doi.org/10.1016/j.toxlet.2007.09.007
  37. Cometto-Muñiz JE, Cain WS. Efficacy of volatile organic compounds in evoking nasal pungency and odor. Arch Environ Health 1993;48:309-14. https://doi.org/10.1080/00039896.1993.9936719
  38. Doty RL. Olfaction and multiple chemical sensitivity. Toxicol Ind Health 1994;10:359-68.
  39. Nordin S, Lötsch J, Kobal G, Murphy C. Effects of nasalairway volume and body temperature on intranasal chemosensitivity. Physiol Behav 1998;63:463-6. https://doi.org/10.1016/S0031-9384(97)00481-2
  40. Junker MH, Danuser B, Monn C, Koller T. Acute sensory responses of nonsmokers at very low environmental tobacco smoke concentrations in controlled laboratory settings. Environ Health Perspect 2001;109:1045-52. https://doi.org/10.1289/ehp.011091045
  41. Smeets MA, Kroeze JH, Dalton PH. Setting occupational exposure limits in humans: contributions from the field of experimental psychology. Int Arch Occup Environ Health 2006;79:299-307. https://doi.org/10.1007/s00420-005-0053-8
  42. Green BG, Dalton P, Cowart B, Shaffer G, Rankin K, Higgins J. Evaluating the 'Labeled Magnitude Scale' for measuring sensations of taste and smell. Chem Senses 1996;21:323-34. https://doi.org/10.1093/chemse/21.3.323
  43. Shusterman D, Avila PC. Real-time monitoring of nasal mucosal pH during carbon dioxide stimulation: implications for stimulus dynamics. Chem Senses 2003;28:595-601. https://doi.org/10.1093/chemse/bjg050
  44. Dalton P. Psychophysical methods in the study of olfaction and respiratory tract irritation. Aihaj 2001;62:705-10. https://doi.org/10.1080/15298660108984678
  45. Smeets MA, Mauté C, Dalton PH. Acute sensory irritation from exposure to isopropanol (2-propanol) at TLV in workers and controls: objective versus subjective effects. Ann Occup Hyg 2002;46:359-73. https://doi.org/10.1093/annhyg/mef054
  46. Djordjevic J, Zatorre RJ, Jones-Gotman M. Effects of perceived and imagined odors on taste detection. Chem Senses 2004;29:199-208. https://doi.org/10.1093/chemse/bjh022
  47. Winston JS, Gottfried JA, Kilner JM, Dolan RJ. Integrated neural representations of odor intensity and affective valence in human amygdala. J Neurosci 2005;25:8903-7. https://doi.org/10.1523/JNEUROSCI.1569-05.2005
  48. van Thriel C, Kiesswetter E, Schäper M, Juran SA, Blaszkewicz M, Kleinbeck S. Odor annoyance of environmental chemicals: sensory and cognitive influences. J Toxicol Environ Health A 2008;71:776-85. https://doi.org/10.1080/15287390801985596
  49. Laska M, Distel H, Hudson R. Trigeminal perception of odorant quality in congenitally anosmic subjects. Chem Senses 1997;22:447-56. https://doi.org/10.1093/chemse/22.4.447
  50. Kleinbeck S, Juran SA, Kiesswetter E, Schäper M, Blaszkewicz M, Brüning T, van Thriel C. Evaluation of ethyl acetate on three dimensions: investigation of behavioral, physiological and psychological indicators of adverse chemosensory effects. Toxicol Lett 2008;182:102-9. https://doi.org/10.1016/j.toxlet.2008.09.001
  51. Sackner MA, Watson H, Belsito AS, Feinerman D, Suarez M, Gonzalez G, Bizousky F, Krieger B. Calibration of respiratory inductive plethysmograph during natural breathing. J Appl Physiol 1989;66:410-20.
  52. Stevens SS. On the psychophysical law. Psychol Rev 1957;64:153-81. https://doi.org/10.1037/h0046162
  53. Crump KS, Howe RB. Chapter 9. A review of methods for calculating confidence limits in lowdose extrapolation. In: Clayson DB, Krewski D, Munro I, editors. Toxicological risk assessment. Boca Raton (FL): CRC Press, Inc.; 1985. 230 p.
  54. Hummel T, Kobal G, Gudziol H, Mackay-Sim A. Normative data for the "Sniffin' Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol 2007;264:237-43. https://doi.org/10.1007/s00405-006-0173-0
  55. Coren S, Ward LM, Enns JT. Sensation and perception. Hoboken (NJ): Wiley; 2004. 598 p.
  56. Schmidt R, Cain WS. Making scents: dynamic olfactometry for threshold measurement. Chem Senses 2010;35:109-20. https://doi.org/10.1093/chemse/bjp088
  57. Wise PM, Canty TM, Wysocki CJ. Temporal integration of nasal irritation from ammonia at threshold and supra-threshold levels. Toxicol Sci 2005;87:223-31. https://doi.org/10.1093/toxsci/kfi229
  58. Wise PM, Radil T, Wysocki CJ. Temporal integration in nasal lateralization and nasal detection of carbon dioxide. Chem Senses 2004;29:137-42. https://doi.org/10.1093/chemse/bjh018
  59. Filipsson AF, Sand S, Nilsson J, Victorin K. The benchmark dose method-review of available models, and recommendations for application in health risk assessment. Crit Rev Toxicol 2003;33:505-42.
  60. Nielsen GD, Ovrebo S. Background, approaches and recent trends for setting health-based occupational exposure limits: a minireview. Regul Toxicol Pharmacol 2008;51:253-69. https://doi.org/10.1016/j.yrtph.2008.04.002
  61. Sand S, Victorin K, Filipsson AF. The current state of knowledge on the use of the benchmark dose concept in risk assessment. J Appl Toxicol 2008;28:405-21. https://doi.org/10.1002/jat.1298

Cited by

  1. Sensory irritation as a basis for setting occupational exposure limits vol.88, pp.10, 2014, https://doi.org/10.1007/s00204-014-1346-z
  2. starter cultures for beer fermentation with a focus on secondary metabolites and practical applications vol.122, pp.4, 2016, https://doi.org/10.1002/jib.381