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This paper proposes robust source localization methods 
for estimating the azimuth angle, elevation angle, velocity, 
and range using a low-complexity planar antenna array in 
impulsive non-Gaussian noise environments. The 
proposed robust source localization methods for wireless 
communication applications are based on nonlinear    
M-estimation provided from Huber and Hampel. 
Simulation results show the robustness performance of the 
proposed robust methods in impulsive non-Gaussian noise. 
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I. Introduction 

Localization of moving sources are very important in a 
variety of wireless communication applications, such as mobile 
wireless sensor networks, intelligent transportation systems, 
wireless local area networks, radar sensor networks, and 
distributed sensor networks. Antenna arrays are used as an 
essential component for source localization [1]-[5]. Recently, 
an antenna array based on antenna switching has been an 
increasing interest as a promising substitute for the 
conventional multichannel array since it has various 
advantages, such as low cost and simple front-end circuitry [2]-
[5]. Several methods for estimating the source parameters 
using such switching-type antenna arrays have been proposed 
in [2]-[5]. While schemes proposed in [2]-[4] consider linear 
antenna arrays, the method developed in [5] considers a planar 
antenna array which has a principal advantage that enables a 
two-dimensional (2D) direction finding of the azimuth angle 
and elevation angle of sources in Gaussian noise environments. 
In algorithms proposed in [2]-[5], the ambient noise is assumed 
to be Gaussian since the Gaussian assumption leads to 
mathematically tractable solutions. However, the ambient noise 
in many physical radio environments is known to be essentially 
non-Gaussian with essential impulsive phenomena through a 
variety of experimental measurements [6]-[9]. Therefore, the 
performance of the methods proposed in [2]-[5] can be 
degraded substantially in the presence of such impulsive non-
Gaussian noise. 

Huber and Hampel have proposed the M-estimators to 
decrease sensitivity of the estimates with respect to impulsive  
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Fig. 1. Block diagram of the low-complexity planar antenna array 
with antenna switching. 
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noise [10]. The M-estimators are nonlinear in nature and use 
special nonquadratic loss functions [10]. Recently, these M-
estimators have been studied in a variety of applications for 
parameter estimation in the presence of impulsive noise [11]-[15]. 
In particular, a robust method based on the Huber’s loss function 
for estimating (azimuth) angle, velocity, and range using a one-
dimensional linear antenna array is addressed in [13]. 

In this paper, we propose two robust source localization 
methods based on nonlinear M-estimation provided from 
Huber and Hampel for estimating the azimuth angle, elevation 
angle, velocity, and range using a low-complexity 2D planar 
antenna array in impulsive non-Gaussian noise. The low-
complexity array considered in [5], which can be used as a 
sensor for source localization in wireless communication 
applications, consists of N1 linear antenna arrays where each 
linear antenna array consists of N2 receiving antennas, as shown 
in Fig. 1. Simulation results confirm that the proposed methods 
offer much more robust performance with respect to the 
intensity of the level of impulsive noise than the conventional 
least-squares (LS) method which degrades quickly when the 
noise is impulsive non-Gaussian. It demonstrates a valuable 
performance improvement of the proposed methods in 
impulsive non-Gaussian noise distributions. The comparison 
between two proposed methods is in favor of the proposed 
method based on Hampel’s loss function. 

II. Signal Model 

Consider a low-complexity planar antenna array with a 

rectangular configuration of N1×N2 receiving antennas where 
all antennas share a single transmitter radiating a linear 
frequency modulated (FM) signal, as shown in Fig. 1. Each 
antenna element is denoted by (n1, n2), where 1≤n1≤N1 and 
1≤n2≤N2. We assume that the transmitted linear FM signal is 
given by  

2
0 0 1( ) exp( 2 ( / 2)),    0 ,x t j f t f t t Tπ= + ≤ <      (1) 

where T is the pulse period, f0 is the initial frequency, and f1 is 
the chirp rate and is given by f1=F/T, where F is the  
bandwidth. The pulses are transmitted starting at the time 
instants ((u–1)N2 +n2 –1)T, u=1, 2,…, U, n2=1, 2,…, N2, where 
U is the number of cycles. The receiving antennas on each 
linear antenna array are switched to the single receiving 
channel from the 1st antenna to the N2-th antenna periodically 
once every cycle. 

An echo signal from a source received by the antenna element 
denoted by (n1, n2) at the u-th cycle, 

1 2, , ( ),n n ux t is mixed with the 
complex conjugate transmitted signal *

0 ( ),x t  and then we 
obtain a frequency down converted received signal:  

( ) ( , , , , ) ( ) ( ),t v t s t tθ ϕ ρ= +y a m        (2) 

where s(t) and ( , , , , )θ ϕ ρv ta  respectively denote the desired 
signal and its corresponding steering vector, ( , , , , )θ ϕ ρ =v ta  

1 2 1 2, , 1( ( , , , , )) ,θ ϕ ρ ×n n u N N Ua v t θ is the azimuth angle, ϕ is the 
elevation angle, v is the velocity, ρ is the range, and m(t) refers 
to “other-signals-plus-noise” vector. 

In (2), the signal s(t) and the steering vector 

1 2, , ( , , , , )θ ϕ ρn n ua v t  are given by  

2
1,1,1 0 1,1,1 1 1,1,1 1 1,1,1

( )
1= ( )exp 2 exp( 2 ( )),
2

s t

g t j f t f t j f t tπ π
⎛ ⎞⎛ ⎞− + × −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

     (3) 

1 2

1 2 1 2 1 2

, ,

1
0 1,1,1 , , 1,1,1 , , 1,1,1 , ,

( , , , , )

exp 2 ( ) (2 )( ) ,
2

n n u

n n u n n u n n u

a v t
fj f t t t t t t t

θ ϕ ρ

π
⎛ ⎞⎛ ⎞= − + − − −⎜ ⎟⎜ ⎟⎜ ⎠⎝ ⎠⎝

 (4) 
where 1,1,1( )g t is the attenuated amplitude, and  

1 2 1 2, , 2 2 ,
2 ( (( 1) 1) ) ,ρ τ= + − + − + +n n u n nt v u N n T vt
c

   (5) 

1 2, 1 2
1 (( ( 1)cos ( 1)sin )sin ),τ θ θ ϕ= − + −n n d n d n
c

   (6) 

where 
1 2,n nτ is the time-delay of the wave propagation from 

the reference antenna located at (1, 1) to the (n1, n2)th antenna, c 
is the velocity of propagation, and d is the interelement spacing 
of the antennas. 
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III. LS Method 

In this section, we briefly introduce a well-known linear 
algorithm, the LS method. Consider the following quadratic 
criterion:  

1 2

1 2

2

1 1 1
( ( ), , , , ) ( ) ( , , , ) ( ) .

N N U

n n u
J s t v t v s tθ ϕ ρ θ ϕ ρ

= = =

= −∑ ∑∑ y a  (7) 

We obtain the estimated signal LSˆ ( )s t  from the minimization 
on the signal s(t) of the criterion (7) as in [16]: 

LS
1 2

1ˆ ( ) ( , , , , ) ( ),θ ϕ ρ= Hs t v t t
N N U

a y        (8) 

where (⋅)H is the Hermitian transpose. Then, the estimates of  
(θ, ϕ, v, ρ) for the LS method are defined as solutions of the 
problem: 

LS, , ,
ˆ ˆ ˆˆ( , , , ) arg max ( , , , ),

θ ϕ ρ
θ ϕ ρ θ ϕ ρ=

v
v P v        (9) 

where  
2

LS LS
1 ˆ( , , , ) | ( ) | .

t
P v s t

W
θ ϕ ρ = ∑        (10) 

In (10), W is the total number of observations. 

IV. Proposed Robust Source Localization 

In this section, we propose robust source localization 
methods for estimating the source parameters (θ, ϕ, v, ρ) from 
the array observations (2) using the considered planar antenna 
array in impulsive non-Gaussian noise. 

 Consider the following nonquadratic criterion: 

1 2

1 2 1 2
1 2

, , , , , ,
1 1 1

( ( ), , , , )

[ ( ( )) ( ( ))],
N N U

I n n u I n n u
n n u

J s t v

F e t F e t

θ ϕ ρ

= = =

= +∑ ∑∑
  

(11)
 

( ) ( ) ( , , , , ) ( ),θ ϕ ρ= −t t v t s te y a          (12) 

where e(t) is the vector of residuals, and the subindexes I and Q 
represent real and imaginary components of variables, 
respectively, that is, eI(t)=Re{e(t)}, eQ(t)=Im{e(t)}. In (11), the 
loss function F(x) is convex, bounded, and even, F(x)=F(–x). 

The estimated signal ˆ( )s t is defined by  

( )
ˆ( ) arg min ( ( ), , , , ),θ ϕ ρ=

s t
s t J s t v          (13) 

and then we obtain the estimates of (θ, ϕ, v, ρ) from  

, , ,

1ˆ ˆ ˆˆ ˆ( , , , ) arg min ( ( ), , , , ) .
v t

v J s t v
Wθ ϕ ρ

θ ϕ ρ θ ϕ ρ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑    (14) 

Usually, the term M-estimate is used for estimates obtained 

by minimizing a sum of nonquadratic loss functions, for 
example, (11). In this paper, ˆ( )s t and ˆ ˆ ˆˆ( , , , )vθ ϕ ρ  are M-
estimates of the signal s(t), azimuth angle θ, elevation angle ϕ, 
velocity v, and range ρ, respectively. A special choice of the 
loss function F(x) results in the estimates robust with respect to 
unknown distributions of the noise components of the 
observations. 

We would like to discuss briefly connections between the M-
estimates and the minimax robust estimation [10], [13]. We 
assume that the real and imaginary components of the elements 
of the random vector m(t) in (2) are independent with the same 
symmetric distribution P(x)=1–P(–x). Then, the M-estimates of 
s(t) (13) and (θ, ϕ, v, ρ) (14) are asymptotically unbiased, and 
their variances have a common factor: 

(1) 2

(2) 2

{( ( )) }( , ) ,
( { ( )})

=
E F xV F P
E F x

          (15) 

where F(1)(x)=dF(x)/dx, F(2)(x)=d2F(x)/dx2, and the expectation 
E{x} is calculated with respect to the noise distribution P.  
V(F, P) is the only term of the variance depending on the loss 
function F and the noise distribution P. Therefore, the 
estimation accuracy depends on F and P. The analysis and 
optimization of V(F, P) can be used for a selection of the loss 
function F with information available on the distribution of the 
noise. We assume that the unknown P(x) belongs to the class of 
distributions Γ, and the optimal loss function is found as a 
solution of the minimax optimization problem: 

0 ( ) arg min max ( , ),
F P

F x V F P
⊂Γ

=          (16) 

where the loss function F0(x) is selected as the best giving the 
minimal variance provided that the noise distribution is the 
worst from the class Γ. 

In this paper, we consider two popular nonquadratic loss 
functions: Huber’s loss function and Hampel’s loss function 
[10]. Huber’s loss function is given by  

21
2

21
2

, | | ,
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| | , | | .
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F x
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μ
μ μ μ
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Hampel’s loss function is given by  

2(| | )2 3
1 2 3 1 1 2 3
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  (18) 

The signal estimate ˆ( )s t (13) can be obtained by the 
following weighted LS algorithm. We represent (11) as the 
following weighted quadratic loss function:  
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where  

1 2 1 2

1 2

1 2 1 2

, , , , , ,
, , 2 2

, , , , , ,

( ( )) ( ( ))
( ) .

( ) ( )
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+
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Step 0: Initialization by the signal estimate of the LS 
method: 

(0)

1 2

1ˆ ( ) ( , , , , ) ( ),θ ϕ ρ= Hs t v t t
N N U

a y       (21) 

(0)
1 2

(0)
1,1,1 , , ˆ( ) ( )

( ) diag{ ( ), , ( )} | .N N U s t s t
t t tψ ψ

=
=Ψ …  (22) 

Step j: Iteration (j = 1, 2, …, J): 
( 1)

( )
( 1)

( , , , , ) ( ) ( )ˆ ( ) ,
( , , , , ) ( ) ( , , , , )

θ ϕ ρ
θ ϕ ρ θ ϕ ρ

−

−=
H j

j
H j

v t t ts t
v t t v t

a Ψ y
a Ψ a

  (23) 

( )
1 2

( )
1,1,1 , , ˆ( ) ( )

( ) diag{ ( ), , ( )} | ,j
j

N N U s t s t
t t tψ ψ

=
=Ψ …   (24) 

where J is the maximum number of iterations, and the iteration 
is stopped if ( ) ( 1) ( 1)ˆ ˆ ˆ| ( ) ( ) | / | ( ) |j j js t s t s t γ− −− ≤ for some small 
number γ. 

Then, we set the estimate of the signal as follows:  
( )

Proposedˆ ˆ( ) ( ).js t s t=             (25) 

Finally, we obtain the estimates of (θ, ϕ, v, ρ) for the 
proposed method from  

Proposed, , ,
ˆ ˆ ˆˆ( , , , ) arg max ( , , , ),

θ ϕ ρ
θ ϕ ρ θ ϕ ρ=

v
v P v     (26) 

2
Proposed Proposed

1 ˆ( , , , ) | ( ) | .
t

P v s t
W

θ ϕ ρ = ∑     (27) 

V. Simulation Results 

We consider a planar antenna array of N1×N2 receiving 
antennas with a half-wavelength interelement spacing, and a 
linear FM signal with f0=24 GHz, the bandwidth F=150 MHz, 
and the pulse period T=100 μs. A single moving source with 
θ=−30°, ϕ=30°, v=70 km/h, and ρ=50 m is considered. We 
assume that the attenuated amplitude g1,1,1(t) in (3) is replaced 
by g1,1,1+η(t), modeling the time-varying echo-signal 
attenuation effects by random η(t). We use g1,1,1=2, N1=4 
antennas, N2=4 antennas, U=3 cycles, and W=100 observations. 

We exploit the widely used two-term Gaussian mixture  

 

Fig. 2. Robustness performance on azimuth angle for the LS
method, proposed method I, and proposed method II as a 
function of α for the probability that the impulses occur.
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Fig. 3. Robustness performance on elevation angle for the LS
method, proposed method I, and proposed method II as a 
function of α for the probability that the impulses occur.
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model for the additive noise. The probability density   
function of this noise model has the form 

2 2
0 1( ) (1 ) (0, ) (0, ),f x N Nα σ α σ= − +  where 0≤α≤1 and 

σ1=100σ0. Here, 2
0(0, )σN  and 2

1(0, )N σ  represent the 
nominal background noise and the impulsive noise 
components, respectively, with α representing the probability 
that impulses occur. 

Three methods are considered: the LS method (7)-(10) and 
two proposed methods (19)-(27), namely, proposed method I 
and proposed method II. In addition, proposed method I uses 
Huber’s loss function (17), and proposed method II uses  
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Fig. 4. Robustness performance on velocity for the LS method, 
proposed method I, and proposed method II as a function
of α for the probability that the impulses occur. 
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Fig. 5. Robustness performance on range for the LS method, 
proposed method I, and proposed method II as a function
of α for the probability that the impulses occur. 
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Hampel’s loss function (18). 

In Figs. 2 to 5, we study the robustness performance of each 
method on the azimuth angle (Fig. 2), elevation angle (Fig. 3), 
velocity (Fig. 4), and range (Fig. 5) in Gaussian and non-
Gaussian noise environments. The results in Figs. 2 to 5 are 
shown as a function of α for the probability that the impulses 
occur. α=0 corresponds to the nominal Gaussian noise. The 
root-mean-square errors (RMSEs) of the azimuth angle, 
elevation angle, velocity, and range estimations are computed 
using 50 independent Monte Carlo simulation runs. It is seen 
from Figs. 2 to 5 that the considered methods give more or less 
equivalent accuracy performance when the noise is Gaussian, 

that is, α=0. However, the LS method is sensitive to the 
impulsive non-Gaussian noise and suffers severe performance 
degradation as α increases, while the performance of the 
proposed methods remains robust with respect to the intensity 
of the level of impulsive noise. The comparison of the two 
proposed methods reveals the superiority of proposed method 
II based on Hampel’s loss function. 

VI. Conclusion 

In this paper, we have proposed robust source localization 
methods for estimating the moving source parameters in 
impulsive non-Gaussian noise environments using a low-
complexity planar antenna array. The low-complexity array 
with antenna switching consists of N1 linear antenna arrays 
where each linear antenna array consists of N2 receiving 
antennas. In simulations, we have shown that the proposed 
robust methods offer significant performance gain over the LS 
method and have a decreased sensitivity of the estimates with 
respect to impulsive noise, with the best results given by 
proposed method II based on Hampel’s loss function. 
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