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This paper presents a statistical model-based noise 
suppression approach for voice recognition in a car 
environment. In order to alleviate the spectral whitening 
and signal distortion problem in the traditional decision-
directed Wiener filter, we combine a decision-directed 
method with an original spectrum reconstruction method 
and develop a new two-stage noise reduction filter 
estimation scheme. When a tradeoff between the 
performance and computational efficiency under 
resource-constrained automotive devices is considered, 
ETSI standard advance distributed speech recognition 
font-end (ETSI-AFE) can be an effective solution, and 
ETSI-AFE is also based on the decision-directed Wiener 
filter. Thus, a series of voice recognition and 
computational complexity tests are conducted by 
comparing the proposed approach with ETSI-AFE. The 
experimental results show that the proposed approach is 
superior to the conventional method in terms of speech 
recognition accuracy, while the computational cost and 
frame latency are significantly reduced. 
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I. Introduction 

The enhancement of noisy speech has attracted a great deal 
of research interest for many years and has received attention 
concerning widespread applications such as voice 
communications, speech recognition, and hearing aids. Speech 
enhancement in the past decades has focused on the 
suppression of additive background noises since speech quality 
and intelligibility are dependent on short-term spectral 
amplitude and insensitive to spectral phase.  The traditional 
decision-directed Wiener filter also exploits those 
characteristics of speech. The goal of speech enhancement for 
automatic speech recognition is to eliminate noise components 
while preserving the characteristics of original speech, and it 
plays an important role in maintaining an average recognition 
rate, especially in the presence of ambient noise. The past 
progress of speech enhancement technology for speech 
recognition allows a driver to control in-car installations via 
voice. For example, a driver is able to select a song or make a 
phone call using a voice command while driving. Recently, the 
use of speech recognition has increased due to its contributions 
to traffic safety as well as user convenience. However, despite 
the efforts in voice recognition research, speech recognition 
performance is often degraded in adverse noisy conditions [1], 
[2]. In a car interior environment, the amount of background 
noise depends on the car speed and also on further boundary 
conditions, such as opened or closed windows. In general, a 
relatively good signal-to-noise ratio (SNR) is achieved while at 
a stand-still or slow speed, and a poor SNR is obtained at 
medium or high speed over 60 km/h. Although the 
employment of speech enhancement technology enables 
robust voice recognition, it is still difficult to maintain the 
average voice recognition rate in a fast moving car. According 
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to human-computer interface research dealing with state-of-
the-art speech recognition technologies, an additive noise 
consisting of engine, wind, and tire noise is regarded as a major 
obstacle to prevent high-accuracy recognition.  

There are many publications that have reported speech 
enhancement methods such as the Wiener filter [3], ETSI-AFE 
[4]-[7], spectral subtraction [8], Ephraim and Malah MMSE 
[9], log spectral amplitude estimation [10], the autoregressive 
model-based Kalman filter [11], [12], the auditory perceptual 
criteria-based method [13], the hidden Markov model (HMM)- 
based methods [14]-[16], and the model-based Wiener filter 
[17]. Among the traditional methods, the two-stage mel-
warped Wiener filter in ETSI-AFE became popular as a signal 
preprocessor for voice recognition due to the noise-robustness, 
relative algorithm simplicity, and online frameworks [4], [7]. 
Although ETSI-AFE shows relatively robust recognition 
accuracy when compared with the traditional methods in [3]-
[13], it has been reported that the traditional methods based on 
pre-trained speech and noise knowledge in [14]-[17] 
outperform ETSI-AFE. However, the traditional model-based 
methods in [14]-[16] are too complex and computationally 
demanding to be equipped into modern automotive devices. 
Therefore, traditional model-based methods are not suitable for 
the purpose of this work. The goal of this work is to develop a 
robust end-efficient speech enhancement algorithm for voice 
recognition which can be employed into a commercial 
automotive device. The detailed benefits and drawbacks of the 
traditional model-based methods are found in [17]. The model-
based method in [14] is relatively simple when compared with 
the other model-based methods in [14]-[16]. However, it still 
requires additional computational costs such as the discrete 
cosine transform (DCT) and inverse DCT (IDCT) processes. 
Besides the computational cost, the HMM-based methods in 
[14]-[16] are unsuitable for online signal processing since the 
best hidden state sequence needs to be found before the 
optimal estimate on noise suppression filter gain. Therefore, we 
assume that ETSI-AFE is an appropriate technology when the 
hardware specifications of modern automotive devices are 
considered. 

The traditional two-stage mel-warped Wiener filter in ETSI-
AFE consists of two filtering stages. The first stage whitens 
colored noise while preserving speech components, and the 
second stage removes any residual noise [4]-[6]. Therefore, the 
cooperation of the two filtering stages overcomes the spectral 
whitening drawback in the traditional Wiener filter. According 
to ETSI-AFE, a posteriori SNR is directly obtained from the 
input spectra, and a decision-directed method is employed to 
estimate a priori SNR. The major weakness of this decision-
directed approach is output speech distortion, which is caused 
by contaminated a posteriori SNR estimation in the presence of 

ambient noise. In this paper, we propose a new noise 
suppression approach to alleviate the spectral whitening and 
signal distortion problem at the same time. In the proposed 
method, the two filtering stages are compressed into a single 
filter by integrating a decision-directed method and an original 
spectrum reconstruction method. Consequently, the two 
filtering stages in ETSI-AFE are substituted by the proposed 
two-stage noise reduction filter estimation scheme. 
Nevertheless, the two filtering stage cooperation concept to 
cope with the spectral whitening defect still remains in the 
proposed approach. The aim of spectrum reconstruction is to 
restore the original spectrum with the noise-corrupted 
observation. In general, the reconstruction performance can be 
guaranteed when the noise-impaired frequency region is 
limited in a narrow area. We assume that this condition is 
relatively well matched to a car environment since the major 
vehicle-noise components are concentrated in the low 
frequency region. In this work, two statistical model-based 
spectrum reconstruction methods are adopted to restore the 
original spectrum from the noisy observation. One is based on 
a single density Gaussian mixture model (GMM) which is 
built of clean speech spectra, and the other is a joint density 
GMM which is established of joint samples (clean and noise-
corrupted spectrum pairs). In the proposed method, the de-
noised spectrum is obtained by the decision-directed method, 
and the original clean spectrum is estimated from the de-noised 
observation. Then, a posteriori SNR is derived from the 
reconstructed speech spectrum. Therefore, a posteriori SNR 
with statistical precision is attained, and the signal distortion 
problem is alleviated by exploiting pre-trained knowledge of 
speech. Since the secondary filtering stage is physically 
removed in the proposed method, both the computational load 
and frame latency can be reduced when it is compared with 
ETSI-AFE. 

The remainder of this paper is organized as follows. After a 
brief review of the conventional two-stage mel-warped Wiener 
filter in section II, the proposed approaches are explained in 
section III. In section IV, the performance evaluation is 
described before conclusions are given in section V. 

II. Conventional Two-Stage Mel-Warped Wiener Filter 

The goal of speech enhancement in signal processing is to 
find the optimal estimate on an original clean speech, given a 
noisy observation. The Wiener filter was originally proposed 
by Norbert Wiener during the 1940s and was published in 
1949 [18]. It is based on a statistical approach. Typical filters 
are designed for desired frequency response. However, the 
design of Wiener filter is from a different angle. Recent popular 
examples of the Wiener filter can be found in [3] and [4].  
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Fig. 1. Block diagram of the conventional two-stage mel-warped 
Wiener filter. 
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According to the conventional two-stage mel-warped Wiener 
filter in Fig. 1, it attempts to remove additive noise throughout 
the two filtering stages. The first stage coarsely reduces noise 
and whitens residual noise. Then, the second stage removes 
any residual noise [4], [5]. Since there is a latency of 2 frames 
(20 ms) in each stage, the total frame latency of the traditional 
two-stage mel-warped Wiener filter is 4 frames (40 ms) [4]. 
Noise reduction is conducted on a frame-by-frame basis. 
Therefore, the frameworks in the two-stage mel-warped 
Wiener filter are suitable for online signal processing. The 
advantage of this online framework is to minimize the whole 
response time of the voice recognition system. 

As shown in Fig. 1, the linear spectrum of each frame is 
estimated after framing the input signal. The power spectral 
density (PSD) of the signal spectrum is obtained by smoothing 
the spectra along the time indexes. Then, the frequency 
response of the Wiener filter is calculated from the speech and 
noise PSD. Linear Wiener filter coefficients are further 
smoothed along the frequency axis by mel-frequency filter-
banks, resulting in a mel-warped frequency domain Wiener 
filter. The impulse response of this mel-warped Wiener filter is 
achieved by applying a mel-warped IDCT. Finally, the 
enhanced signal is achieved by applying the Wiener filter to the 
input signal. 

According to ETSI-AFE, the frequency response for noise 
reduction is derived from a priori SNR. The a priori SNR is 
estimated from a posteriori SNR according to a decision-
directed approach [4], [9]. The a priori SNR is derived 
according to (1) through (4). The a posteriori SNR is obtained 
by 
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The transfer function of the Wiener filter is then obtained using 
the a priori SNR by 

( ) ( )
( )

2

2

,
, .

1 ,
bin t

H bin t
bin t

η
η

=
+

            (5) 

The spectral amplitude of a noiseless signal is calculated as 

( ) ( ) ( )1/ 2 1/ 2
den3 in, , , ,P bin t H bin t P bin t=        (6) 

where ( )1/ 2
in ,P bin t  denotes the amplitude spectrum of the 

input signal. As shown in (1), the a posteriori SNR is obtained 
directly from the input spectra even in the presence of adverse 
noise. In a fast moving car, the input spectra are already 
contaminated by ambient noise. Therefore, the output signal 
distortion of ETSI-AFE is inevitable due to this direct estimate 
on a posteriori SNR from input observations. 

III. Proposed Approaches 

The simple motivation of this work is that a posteriori SNR 
estimation with statistical precision is helpful for enhancing the 
speech quality of the conventional decision-directed Wiener 
filter. To realize this idea, we integrate a decision-directed 
method with a model-based speech spectrum reconstruction 
method into a new noise reduction filter estimation stage. That 
is, the de-noised signal spectra are attained by using the 
conventional decision-directed method, and the original speech 
spectra are restored from the de-noised spectra. Then, a 
posteriori SNR with statistical precision is achieved from the 
reconstructed speech spectra. In this work, two spectrum 
reconstruction methods are adopted to restore an original clean 
spectrum. One is based on a single density GMM, which is 
established with clean signals, and the other involves a joint 
density GMM pre-trained with joint samples (clean and noisy 
signal pairs). In the proposed method, the original spectrum is 
restored by two steps. The first step is a clean amplitude 
spectrum estimation based on GMM. The mapping function to 
transform a noisy spectral vector into a clean spectral vector is 
a least-squares regression estimate [19], [20]. The second step 
is a generation of the spectral amplitude of a clean signal. 

Let nx R∈  be the spectral vector of a noise-corrupted 
signal, and ny R∈  be the spectral vector of a clean signal. 
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The goal of spectral reconstruction is to find a mapping 
function, F, that minimizes the mean square error, 

( ) 2

mse ,E y F xε ⎡ ⎤= −⎢ ⎥⎣ ⎦
           (7) 

where [ ]E ⋅  denotes the expectation, and ( )F x  is the 
reconstructed clean spectral vector. Details of the mapping 
functions are found in [19] and [20]. In our approaches, the 
clean spectral amplitude is restored in a logarithmic spectrum 
domain in order to mimic human auditory characteristics. 

1. Mapping Function Based on GMM 

The distribution density of x is modeled as a Gaussian mixture 
density, that is, a mixture of Q component densities given by 
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where λ  denotes the GMM of clean speech, and ,iα  ,iμ  
and iC  indicate a priori probability, mean vector, and 
covariance matrix of class I, respectively. The mapping 
function that minimizes the mean square error is obtained as 
follows: 
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The weighting function ( )ih x  denotes the a posteriori 
probability of the i-th Gaussian component generated by vector 
x. 

2. Mapping Function Based on Joint Density GMM 

Let ( ), Tz y x=  be a joint vector between the spectral 
vector of a clean signal and the spectral vector of a noisy signal. 
If the joint density of the vectors is modeled as a mixture of Q 
2n-variate Gaussian functions, the mapping function based on 
the joint density is obtained as follows: 

( ) [ ] ( ) ( )1

1
| ,

Q
y yx xx x

i i i i i
i

F x E y x h x C C xμ μ−

=

⎡ ⎤= = + −⎣ ⎦∑ (10) 

where 

( )
( )

( ) ( )

( )
( ) ( )

1
1/ 2

1
1/ 2

1

1exp
22

1exp
22

Tj x xx x
i i in xx

i
i Q Tj x xx x

j j jn xxj
j

x C x
C

h x
x C x

C

α
μ μ

π
α

μ μ
π

−

−

=

⎡ ⎤− − −⎢ ⎥⎣ ⎦
=

⎡ ⎤− − −⎢ ⎥⎣ ⎦
∑

with 
xx xy
i i

i yx yy
i i

C C
C

C C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 
x
i

i y
i

μ
μ

μ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

3. Spectral Compensation Based on GMM 

The logarithmic spectral amplitude of the de-noised signal in 
(6), which is obtained by the tradition decision-directed 
approach, is used for original spectrum reconstruction. By 
doing so, the variability of the input spectra is alleviated in the 
presence of severe noise, and the reconstruction performance 
becomes reliable. The amplitude spectrum of a clean signal is 
restored as follows: 
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(11) 
The optimized updating factor α can be derived by minimizing 
the mean square error as follows, 
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  In this work, the noiseless amplitude spectrum in (13) is 
substituted by the de-noised spectrum in (6). For the robustness 
of the algorithm, a time-frequency smoothing step is 
recommended as  
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The transfer function for noise suppression is then obtained 
according to (15) through (17). An enhanced a posteriori SNR 
is calculated as  
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An enhanced a priori SNR is obtained as  
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Then, an enhanced transfer function is obtained as  
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The amplitude spectrum of a clean signal is then obtained 
according to (18): 

( ) ( ) ( )1/ 2 1/ 2
den5 2 den4, , , .P bin t H bin t P bin t=        (18) 

4. Proposed Model-Based Noise Reduction Approach 

Although the two filtering stages are substituted by a single 
reduction filter in the proposed approach, the spectral 
whitening and signal distortion drawback are still alleviated by 
the proposed two-stage filter estimation scheme. The proposed 
noise reduction filter with statistical precision is achieved as 
follows. In the first stage, the de-noised spectrum is derived 
from the input by the conventional decision-directed method. 
The original spectrum reconstruction is followed in the second 
stage. Then, an enhanced transfer function is obtained 
according to (11) through (17). Figure 2 shows a block diagram 
of the proposed model-based noise reduction approach.  

The green blocks in Fig. 2 indicate the proposed second 
noise reduction filter estimation stage, and the proposed 
method does not require an actual second filtering stage. 
Therefore, the frame latency is reduced by half when compared 
with the two filtering stages of ETSI-AFE. 
 

 

Fig. 2. Block diagram of the proposed model-based noise
reduction approach. 
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Fig. 3. (a) Original noisy signal and spectrogram and (b) 
enhanced signal and spectrogram after 2-stage Wiener 
filter (c) after the proposed approach with a single 
density GMM and (d) after the proposed approach with 
a joint density GMM. 
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Figure 3(a) shows a noisy signal sample and its 

corresponding spectrogram recorded in a moving car at 
medium speed of 60 km/h to 80 km/h. The acoustic transducer 
is located on the center-fascia of a D segment sedan, where 
after-market navigation is usually installed. The acoustic 
waveform is digitalized into 16 bit pulse-code modulation 
(PCM) format at 16 kHz sampling. Since ETSI-AFE supports 
8 kHz sampling rate, the original algorithm is modified to 
process 16 kHz samples. As shown in Fig. 3(a), main vehicle 
noise components are spread in the low-frequency region. 
Although the conventional ETSI-AFE removes additive noise 
components twice, car-noise components are still found in  
Fig. 3(b), particularly in the speech portions. Although a single 
noise suppression filter is employed in the proposed approach, 
Figs. 3(c) and 3(d) show that the car-noise components are 
efficiently suppressed even in the speech portions. 
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IV. Experimental Results 

The aim of this work is to develop a robust and efficient 
signal pre-processor for speech recognition in a car 
environment. Since the resources of an automotive device are 
constrained, a tradeoff between computational efficiency and 
performance should be considered in developing a speech 
enhancement algorithm. Under the hardware specifications of 
modern commercial automotive devices, it is assumed that the 
noise suppression approach in ETSI-AFE is a relatively good 
solution. Therefore, our research is focused on improving the 
performance and computational efficiency of the traditional 
two-stage mel-warped Wiener filter while reducing the 
computational complexity. The proposed model-based 
approach can be implemented in two different branches. One is 
based on a GMM (a single density GMM-based method) and 
the other is using a joint density model (a joint density GMM-
based method). The performance evaluation of the proposed 
approach is also performed by comparing it with ETSI-AFE. 
The performance evaluation on speech enhancement methods 
can be performed in terms of SNR or segmental SNR 
improvement, a signal distortion measure, or a subjective 
listening test such as mean opinion score test. In this 
experiment, the evaluation is conducted in terms of average 
isolated word recognition (IWR) rate since the proposed 
method is targeted at voice recognition. The simple assessment 
on the computational cost is also conducted by measuring the 
program completion time. 

1. Speech Recognizer Preparation and GMM building 

A HMM-based speech recognition system was prepared to 
demonstrate the performance of the proposed approach in 
simulative and real car environments. To establish initial 
acoustic models (AMs), a number of phonetically optimized 
utterances were recorded from 1,500 persons. The speech 
waveforms were digitalized into 16 bit PCM at 16 kHz 
sampling rate. Since the initial speech signals are collected in 
an office room, these initial AMs do not match the car 
environment. Therefore, an AM adaptation is necessary for 
environmental adjustment. In this paper, the initial AMs are 
adjusted using the discriminative AM adaptation method in 
[21], [22]. For this AM adaptation procedure, 8,000 utterances 
were collected from 80 speakers in moving cars at a medium 
speed of 60 km/h to 100 km/h. As speech recognition features, 
mel-frequency cepstral coefficients (13 MFCCs including C0) 
and first and second derivatives are extracted. The voice 
recognizer is able to identify 46,000 words, and the vocabulary 
word list is composed of destination entries for a car navigation 
system. Some examples of the Korean points of interest  

 

Fig. 4. Block diagram of environment matched AM training 
procedure. 
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and their corresponding lexicons are as follows: 

포곡점현대그린서비스 p o g o xg z v xm h jv xn d E g U 
r i xn s v b i s U  
포구 p o g u  
포대포 p o d E p o  
포도나무미술학원 p o d o n a m u m i s u xl h a g wv xn  
포도마을사거리 p o d o m a U xl s a g v r i  
포도원식당 p o d o wv xn s i xg D a N  
포동 p o d o N  
포동부동산 p o d o N b u d o N s a xn  
포드 p o d U  
포드서비스센터 p o d U S v b i S U S e xn t v 
Figure 4 represents the AM training procedure to obtain an 

environment matched AM for a speech recognition system. As 
shown in Fig. 4, the car environment matched AM is 
established by adjusting the initial models. 

In the proposed model-based noise reduction approaches, 
two kinds of GMMs are required. One is a single density 
GMM, and the other is a joint density GMM. In order to build 
a single density GMM which represents the pre-trained 
knowledge of speech for original spectrum reconstruction, 
4,000 utterances are collected from 100 persons (50 males and 
50 females) inside an idling car. Since it is difficult to record 
clean and noisy signals at the same time, the immunity learning 
scheme is adopted to obtain joint samples (clean and noisy 
signal pairs). Moving car sounds at medium and high speeds of 
60 km/h to 120 km/h are recorded for an hour while driving on 
a highway including asphalt and concrete road surface. The car 
noise signal is artificially added to the previous utterances in a 
random manner. Thus, the 4,000 joint samples (clean and 
artificially noise-added signal pairs) are obtained, and these 
artificial joint samples are used to estimate a joint density 
GMM. A Hyundai Verna, a C segment sedan, was used for this 
car noise acquisition. The speaker lists involved in the HMM 
and GMM buildings are not overlapped. In order to find the 
optimal mixture size of GMMs, several speech recognition 
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tests are conducted by changing the mixture size (from 8 to 
512). The performance difference depending on the mixture 
size can be ignored due to the time-frequency spectrum 
smoothing and mel-frequency warping scheme in Fig. 2. 
Therefore, the GMMs (a single density GMM and a joint 
density GMM) of 8 mixture size are selected for the 
computational efficiency. 

2. Isolated Word Recognition Tests 

The performance of the proposed method is demonstrated in 
simulative and real car environments. For the simulative test, 
269 utterances are collected from 20 speakers (8 males and 12 
females) in an idling car. A sports utility vehicle (SUV) 
manufactured by GM-Daewoo Motors is used for this speech 
database (DB) acquisition, and car noise signal on an asphalt 
road is also recorded for artificial noise addition. Since the 
SNR is estimated in the SNR range between 15 dB and 20 dB 
in an idling car, car noise is artificially added in the range 
between –5 dB and 10 dB. 

Figure 5(a) shows a signal sample and its corresponding 
spectrogram recorded in an idling car. Their artificial noisy 
signal and spectrum pair is shown in Fig. 5(b). Since the SUV 
sounds are recorded at medium speed of 60 km/h to 80 km/h 
on a smooth asphalt road, it is seen that car noise components  

 

 

Fig. 5. (a) Signal and spectrogram sample in an idling car and (b)
artificial noisy signal and spectrogram sample in –5 dB. 

(a) 

(b) 

 

Table 1. IWR results for simulative data. 

 Original 
AFE noise 
reduction 

Single density 
GMM 

Joint density 
GMM 

Idling 92.19% 97.03% 97.4% 97.77% 

SNR 10 88.1% 95.91% 96.28% 96.65% 
SNR 5 85.13% 95.91% 96.28% 96.65% 
SNR 0 71.38% 92.24% 93.31% 93.68% 
SNR –5 46.47% 86.99% 89.96% 90.71% 

 

are concentrated in the low and narrow frequency region. It is 
known that this kind of colored noise causes only small 
degradation of voice recognition performance. 

Table 1 shows voice recognition test results in the simulative 
condition. As shown in Table 1, the proposed single density 
GMM-based method and joint density GMM-based method 
show a competitive performance with ETSI-AFE. However, 
the performance improvement of the proposed methods is not 
noticeable since the characteristics of additive noise are not so 
complex, and the word lengths of the speech samples are 
relatively long having more than 4 syllables. Furthermore, the 
noise only positions in the front and back of the utterance are 
relatively short at around 500 ms. 

For the real environment test, 1,252 utterances are recorded 
from 30 speakers (15 males and 15 females) in various car 
environments (idling to high speeds over 100 km/h). Various 
vehicle types, such as D and E segment sedans and SUVs, 
served for this real test data collection. The SNR range of the 
real speech DB is measured from –10 dB to 20 dB. This real 
test DB represents real driving situations well, including car-
engine noise, street noise, wind noise from an air-conditioner or 
opened window, burst noise caused by a coarse road surface, 
and so on. Therefore, the voice recognition accuracy without 
noise reduction is very low (IWR accuracy of 9.5%).  

As shown in Fig. 6, the characteristics of real car noise are 
different from the simulative car noise. Since used cars are 
served for real speech acquisition and the road surface is not 
smooth (including a concrete road), the frequency components 
of real car noise are relatively widespread while the main 
components are still concentrated in low frequency region. 
Also, the noise only positions in the front and back of the 
utterance are relatively long at more than 1 s. Therefore, it is 
found that the speech recognizer has difficulty identifying the 

 

 

Fig. 6. Signal sample and spectrogram at medium speed of 
60 km/h to 80 km/h.  

Table 2. IWR results for real data. 

 
AFE noise 
reduction 

Single density 
GMM 

Joint density 
GMM  

ASR accuracy 76.42% 85.06 86.74% 

ERR 0% 36.64% 43.77% 
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test utterances. 
Table 2 shows the average speech recognition rate and the 

corresponding error reduction ratios (ERRs). As shown in 
Table 2, the proposed method is superior to ETSI-AFE. Since 
the pre-trained knowledge on the original and the noise-
impaired signals is available in a joint density GMM, the 
proposed method based on joint density GMM shows a 
significant performance improvement. 

3. Computational Complexity Tests 

The computational complexity of the proposed method 
based on a single density GMM is compared with ETSI-AFE. 
For this computational cost comparison, the program 
completion time for several noisy signal samples is measured 
on a personal computer (PC) equipped with a 2.2 GHz CPU 
and 2G memory. The operating system of the PC is based on 
Linux. For the algorithm integration into small automotive 
devices such as car navigation, fixed-point arithmetic 
conversion is inevitable since a commercial automotive device 
does not have a floating-point arithmetic processor for price 
competiveness. Therefore, ETSI-AFE and the proposed single 
density GMM-based method are implemented using fixed-
point arithmetic in C program-language. A GNU program 
compiler is adopted to execute both the noise reduction 
algorithms. The results of the computational complexity tests 
indicate that the computational load of the proposed method is 
mitigated by average 40% when compared with ETSI-AFE. 
The computational load difference between the proposed 
approaches is caused by the alternative spectral mean 
estimation procedure in the mapping function. Since a diagonal 
covariance matrix is used in the proposed joint density GMM-
based method for computational efficiency, the additional 
computational burden can be ignored. Therefore, it is presumed 
that the proposed joint density GMM-based method is also 
computationally efficient. 

V. Conclusion 

In this paper, a statistical model-based noise reduction 
approach for a speech recognition system in a car environment 
was proposed. The proposed approach is motivated by the 
simple idea that the enhancement qualities of the traditional 
decision-directed Wiener filter might be improved if a more 
precise estimate on a posteriori SNR is possible. In order to 
implement this idea, the two filtering concepts in ETSI-AFE 
are compressed into a single filter in order to alleviate the 
spectral whitening and signal distortion problem in the 
traditional decision-directed Wiener filter. In this work, we 
combine a decision-directed method with an original spectrum 

reconstruction method and develop a new two-stage noise 
suppression filter estimation scheme. The proposed two-stage 
noise suppression filter estimation scheme was demonstrated in 
terms of average voice recognition rate in the simulative and 
real car environments. The experimental results showed that 
the proposed approach is superior to ETSI-AFE because the 
proposed approach efficiently alleviates the spectral whitening 
and signal distortion artifacts. Since the two filtering stages in 
ETSI-AFE are compressed into a single filter in the proposed 
approach, a secondary filtering stage is not required. Therefore, 
the computational load of the proposed method is mitigated by 
an average of 40% while reducing the frame latency by half 
when compared with ETSI-AFE. The proposed method will be 
adapted to a huge vocabulary voice recognition system for 
commercial car navigation [23]. 
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