
646 Choulsoo Jang et al. © 2010 ETRI Journal, Volume 32, Number 5, October 2010

A component is a reusable and replaceable software
module accessed through its interface. Component-based
development is expected to shorten the development
period, reduce maintenance costs, and improve program
reusability and the interoperability of components. This
paper proposes a new robot software component platform
in order to support the entire process of robot software
development. It consists of specifications of a component
model, component authoring tool, component composer,
and component execution engine. To show its feasibility,
this paper presents the analysis results of the component’s
communication overhead, a comparison with other
robotic software platforms, and applications in
commercial robots.

Keywords: Robot software, component, component
platform, authoring tool, component composer,
component execution engine, OPRoS.

Manuscript received Mar. 15, 2010; revised June 4, 2010; accepted June 22, 2010.
This work was supported by the Industrial Foundation Technology Development Program of

MKE/KEIT, Rep. of Korea [KI001800, Development of Open Platform for Robotic Services
(OPRoS) Technology].

Choulsoo Jang (phone: +82 42 860 6726, email: jangcs@etri.re.kr), Seung-Ik Lee (email:
the_silee@etri.re.kr), Seung-Woog Jung (email: swjung@etri.re.kr), Byoungyoul Song (email:
sby@etri.re.kr), Rockwon Kim (email: rwkim@etri.re.kr), and Sunghoon Kim (email:
saint@etri.re.kr) are with the IT Convergence Technology Research Laboratory, ETRI,
Daejeon, Rep. of Korea.

Cheol-Hoon Lee (email: clee@cnu.ac.kr) is with the Department of Computer Engineering,
Chungnam National University, Daejeon, Rep. of Korea.

doi: 10.4218/etrij.10.1510.0138

I. Introduction

Not only do robots have many different types of sensors,
actuators, and degrees of freedom, but also their services are
becoming more and more sophisticated allowing them to run
autonomously, while providing complex services in an
unknown or partially known environment [1]. Unfortunately,
their services are often not reusable even in slightly different
application scenarios because they are tied to specific robotic
hardware, processing platforms, and communication
infrastructures. Also, the assumptions and constraints about
tasks and operational environments are hidden and hard coded
in the software implementation [2]. This increased complexity
has lead to increasing demands for modularity, productivity,
reusability, integration, and maintenance.

Component technology seems to be an attractive approach to
meet the demands in the robotic software field [3]. A
component is a reusable and replaceable software module that
enables complex functions to be developed easily. The main
focus of component-based development is concerned with the
assembly of pre-existing software components into larger
pieces. Nevertheless, software reuse and component-based
development are not yet state-of-the-art practice software
development approaches in robotics [2].

Widely used component technologies such as EJB [4], .NET
[5], and the CORBA [6] component model, have paid much
attention to business applications. They seem to be relatively
heavyweight and complex. Also, they do not address issues
such as real-time applications, fault management, or other
functionalities that are important for robots.

Recently, some research has actively been conducted on
component-based robot software platforms [7]-[19]. They can

OPRoS: A New Component-Based
Robot Software Platform

 Choulsoo Jang, Seung-Ik Lee, Seung-Woog Jung, Byoungyoul Song,
Rockwon Kim, Sunghoon Kim, and Cheol-Hoon Lee

ETRI Journal, Volume 32, Number 5, October 2010 Choulsoo Jang et al. 647

be categorized into three groups: the middleware-based
component platform, robot device interface platform, and robot
software architecture platform.

MSRDS [8], MARIE [9], Miro [10], RT-Middleware [11],
OROCOS [12], ROS [13], and PEIS Ecology [14] are
middleware-based component platforms that manage
components and their communication with their component
execution engine for multipurpose robot control software.
However, they focus on the middleware framework, so they do
not sufficiently support related tools to component development
and its simulation. The robot device interface platforms such as
Player [15] aim at providing interfaces for accessing robot
sensors and actuators over the network. ERSP [16], Urbi [17],
MobileRobots [18], and iRobot Aware [19] are robot software
architecture platforms that provide layered software architecture.

We argue that a good robot software platform needs to offer
much more than pure middleware such that it supports the full
development lifecycle for robot software. To meet the above
mentioned requirements, this paper proposes a new component
technology called open platform for robotic services (OPRoS)
[20]. It supports the full development lifecycle for robot
software by providing a robot software component model,
component execution engine, various middleware services,
development tools, and a simulation environment.

The rest of this paper is organized as follows. A detailed
description of a good middleware-based component platform
for robot software is given in section II. In section III, the
OPRoS component model is introduced. Section IV explains
the component execution engine, and section V shows its
development tools for authoring and composing components.
An analysis of the OPRoS component platform and its
application for commercial robots follows in section VI.
Section VII concludes this paper.

II. Requirements Analysis

In this section, we analyze the desirable and required
properties of a component software platform for robots, which
is intended as a basis for a new component platform.

First, a component software platform for robots should
support diverse operating systems such as MS Windows,
Linux, and real-time operating systems because robot systems
usually run under various operating systems.

Second, the component software platform needs to support
distributed communications. A robot system is frequently
distributed in order to expand computational power or to
interact with its external servers.

Third, it is necessary that a component software platform be
architecture independent. It should not rely on any specific
robot software architectures such as Sense-Plan-Action,

Subsumption [21], Hybrid [22], and other architectures, so that
it can be applied to as many robots as possible, with whatever
architecture they take.

Fourth, a component software platform for robots needs to
support various execution semantics. Robots sometimes
execute their jobs periodically as well as non-periodically for a
classical control loop, method invocation for higher level
control, or event-based stimulus-response.

Fifth, it is desirable for the components to be as simple as
possible, but at the same time they should be composable so a
more complex component can be assembled with other
components. It would be of great help if we could compose
several components so that they cooperate to achieve a shared
goal.

Sixth, it should be easy to use. Robot developers usually like
using their familiar development methodologies rather than
learning a new one. Therefore, it is necessary to provide a
simple component model, its development tools, and reusable
service building blocks for easy use. In addition, transparency
in supporting communication middleware is required for easy
use because robot software developers are usually unwilling to
do middleware dependant programming.

Finally, a component software platform for robots should have
fault detection, recovery, real-time, and QoS support. Robots are
embedded systems, and they often run for a very long period
(hours, months, or years). They often run in environments that
require prompt responses, and sometimes they need to run
autonomously without any human interference.

III. OPRoS Component Model

This section introduces the OPRoS component model
satisfying the previously-mentioned requirements.

1. Network Distributed

OPRoS components are reusable and replaceable software
modules that do not need recompilation. They are distributed on
a network. They run loosely coupled and independently, often
representing a robot’s devices. A robotic service is composed of
these distributed components in a similar fashion as a robot
hardware system is assembled with devices. A communication
infrastructure including connection management of the
components is provided by the component execution engine that
is a runtime environment of the OPRoS components. By the
separation of network management from component logic,
developers can focus on the logic that they intend to develop
without additional concerns about network management.

The granularity of a distributed OPRoS component can be at
any level. For example, it can be at device level, algorithm

648 Choulsoo Jang et al. ETRI Journal, Volume 32, Number 5, October 2010

Fig. 1. OPRoS component model.

ServicePort
(provided)

ServicePort
(provided)

DataPort
(input)

DataPort
(input)

EventPort
(input)

Periodic Non-periodic

queued

unqueued

onEvent()

Data

Method 1
Method 2
Method N

Method A
Method B
Method Z

onExecute()

ServicePort
(required)

ServicePort
(required)

DataPort
(output)

EventPort
(output) Event

level, or coordination level, and so on, and it is up to
component developers to decide which one is appropriate.
With the distributed components of diverse granularities, a flat
or hierarchical composition manner might be used for various
robot software architectures.

2. Ports as Interface

In component-based robot software, components
communicate with each other via connections. A connection is
established from a port of a sending component to a port of a
receiving component. We have observed that robot software
developers usually use inter-component communication for
sending or receiving three types of information: method
invocation, data, and events.

To support these features, the OPRoS component model has
three types of corresponding ports, that is, service, data, and
event ports. A component has one or more ports of these types.
Figure 1 depicts the OPRoS component model.

A service port allows other components to invoke its
methods. It has an interface definition of a set of methods. A
service port is either a provided or required type. A provided
service port provides method services to other components.
Methods of a provided service port are mapped to the user
defined methods in the component. A required service port
plays its role as a proxy to the user defined method of the
connected component.

A data port is for exchanging data. It is either for input or
output. An output data port sends data to input data ports of
other components. Both the input and output should be of the
same data type for a data exchange. A data port can have either
a queue to store the received data or a single-sized buffer to
store the most recently received datum. The received data are

processed in the onExecute() method of a component in a
periodic or non-periodic fashion.

An event port is for transmitting events. Although data ports
and event ports are similar in that they transmit structured data,
events are processed immediately by the network service
thread with the onEvent() method, whereas the received data of
a data port are buffered and then processed later by the
component service thread.

Output ports for data/events do not block when transmitting
data/events whereas service ports support blocking and non-
blocking invocation according to the method types.

3. Execution Mode

The execution mode of a component is either periodic, non-
periodic, or passive. In periodic mode, the onExecute() callback
method of a component is called periodically to process data or
execute its algorithm. It is useful for robot device components as
they typically run periodically. Users can specify the execution
period of a component in its component profile.

The onUpdate() method of the components of an equal
period are invoked within the period right after all of their
onExecute() methods are called. In contrast to the onExecute()
method, which usually performs the component’s primary
logic and finishes as soon as possible, the onUpdate() method
is intended for relatively expensive computational operations.
This two-phase execution can minimizes latency and jitter,
which is critical in real-time applications.

The non-periodic mode is used when the expected execution
time of the onExecute() method is quite long or unpredictable.
One thread is dedicated to each of the non-periodic
components. A component in this mode iteratively continues its
execution within the onExecute() method and doesn’t release
its dedicated thread until its destruction.

A component in passive mode has neither the onExecute()
callback method nor its own thread. Instead, it is activated only
when a stimulus such as an event or a method request arrives
from other components.

4. Class Diagram

A user component should inherit from a base class called
“component” of OPRoS as shown in Fig. 2. The component
has one or more ports to interact with other components. It
again inherits various interfaces such as lifecycle, port
management, and property. These interfaces are used by the
component container in order to manage the components. A
user component inheriting the base class is realized by
overriding the inherited callback functions and adding user
defined methods. User defined methods are invoked by the
network service thread upon receiving a request from client

ETRI Journal, Volume 32, Number 5, October 2010 Choulsoo Jang et al. 649

Fig. 2. UML class diagram of an OPRoS component.

Component

+onInitialize(): ReturnType
+onStart(): ReturnType
+onStop(): ReturnType
+onReset(): ReturnType
+onError(): ReturnType
+onRecover(): ReturnType
+onDestroy(): ReturnType
+onEvent(Event evt): ReturnType
+onExecute(): ReturnType
+onUpdate(): ReturnType
+onPeriodChanged(): ReturnType

LifecycleInterface

+initialize(): ReturnType
+start(): ReturnType
+stop(): ReturnType
+destroy(): ReturnType
+reset(): ReturnType
+stopOnError(): ReturnType
+recover(): ReturnType
+getStatus(): int

Port

+getType(): PortType
+getName(): string

PropertyInterface

+setProperty(string name, string value)
+getProperty(string name): string

PortInterface

+addPort(string name, Port port): ReturnType
+getPort(string name): Port

UserDefinedComponent

1 1..*

ServicePort DataPortEventPort

Container

Executor

+add(Component component)
+remove(Component component)
+start()
+start(Component component)
+stop()
+stop(Component component)
+reset()
+reset(Component component)
+setPriority(int priority)
+getPriority(): int
+setPeriod(int period)
+getPeriod(): int
#run(): ReturnType

1..*

1

whereas the methods of parent interfaces and callback methods
of a component are invoked by the container.

The active execution of a component, either in periodic or
non-periodic mode, is accomplished through the executor
managed by the component container. The container registers
components to the executor, and the executor runs the
registered components, which have an equal period and the
same priority, with an allocated thread from the container.

5. Lifecycle Management

A component runs through a sequence of states during its
lifecycle as shown in Fig. 3. When a component’s instance is
created, it is in a Created state. Its state becomes a Ready state
after onInitialize() is invoked by the container. The onStart()
method leads the component into an Active state where it
iterates the onExecute() and onUpdate() methods. When the
onStop() method is called, it goes into an Inactive state and its
execution is suspended until activated again by the onStart()
method.

If an error occurs, the component transits into an Error state
and its onError() callback is invoked by the container to deal
with the error. When it recovers from the error, the component

Fig. 3. State transition diagram of an OPRoS component.

Created

Ready

Active Error

Destroyed

Instance creation

onInitialize()

onError()

onRecover()

onDestroy()
onDestroy()

Instance deletion

onExecute(), onUpdate()

Inactive

onStop()

onStart()

onStart()

onDestroy()

goes into the Ready state right after the onRecover() method is
invoked. A component instance is destroyed after its
onDestroy() method is invoked.

 6. Component Composition

Obviously, it is helpful if we can utilize existing components
when making a new component in that this reduces the
development time and errors that might occur when creating
the component from scratch. This naturally leads to the types of
components: atomic and composite.

An atomic component is made solely, and is mainly devised
to abstract a low-level device or algorithm.

A composite component is composed of other components
(either atomic or composite). A composite component accesses
the ports of each contained component. When an interface of
the composite component is called, it is delegated to a
corresponding contained component. In this way, a composite
component abstracts the interfaces of inner components so that
users can access simplified interfaces.

7. XML Profiles

A component’s port types, execution semantics, properties,
and so on are described in an XML file called a component
profile. The profile is interpreted by the component execution
engine in order to operate the corresponding component.

650 Choulsoo Jang et al. ETRI Journal, Volume 32, Number 5, October 2010

Fig. 4. OPRoS component execution engine.

Component
manager

Component
explorer

Deployer

 Fault
tolerance

Real-
time/QoS

Remote
debugging

Remote
monitoring

Component
deploy/undeploy

Control interface
Ports Ports

Other
components

Other
components

Monitoring interface

Component

Component execution engine

Lifecycle and status
management

Component execution
coordination

Execution semantics
management

Connection
management

OS abstraction
Component container

Component
service

The component’s APIs are described in a separated service
profile as a list of method signatures provided by a service port
of a component. Also, the data profile describes data types or
data structures used in method calls or data transfer between
components. The two profiles are similar to CORBA IDL in
the point that they describe interfaces and data types.

An application profile describing the network configuration
of distributed nodes, references to participating components,
and port connections between components is given to the
engine for running a robot application.

IV. Component Execution Engine

The component execution engine manages and executes
components in accordance with the application profile and
each component’s profile. It relieves robot developers from
thread management, resource allocation, and state management
so that they can concentrate on the application logic.

The engine has a component manager, component container,
and component service as shown in Fig. 4. It explores and
deploys components from a component composer, executes
components harmonically, manages their lifecycle and states,
connects components using the component container, and
supports services such as monitoring and fault tolerance.

The component container interprets its application profile,
loads participating components onto memory, establishes their
connections, and activates the components in accordance with
each component profile. When it comes to its turn, an activated
component runs on an executor according to the component
profile. The executor is allocated a thread by the scheduler
module of the container. The scheduler allocates the same
executor to the components of an equal period and priority to
prevent threads from unnecessary context switching so that the
performance is not weakened. The scheduler allocates one

dedicated executor and a thread to each non-periodic
component and executed it only once.

The component execution engine provides an appropriate
abstraction of operating systems. The abstraction presents
portable wrapper classes of the common functionalities such as
thread functions, thread synchronization functions, and file I/O
functions that are offered by any operating system. The
wrapper classes encapsulate the system functions offered by
the OS to which the code needs to be ported.

In addition to the OS abstraction classes, the engine provides
connectors which are the abstraction class for the I/O
communication to allow robot components to communicate
across different various networks. The engine allocates a
connector to establish the connection between two interacting
ports. Connectors provide network connection management,
marshalling functions, remote method calls, and data transfer
functions. They can be bound to various network protocols or
communication middleware. Currently, the engine provides
three types of connectors: SocketConnector for TCP/IP,
UPnPConnector for UPnP, and CorbaConnector for CORBA.

The execution engine should not fall into failure on faults or
anomalies. The self-reconfigurable fault tolerance module
detects faults or anomalies, and repairs them autonomously
[23]. In particular, it focuses on the reliability of the threads
encapsulated in the executor. Each thread processes user
components periodically at the same cycle. As new
components of the same cycle time are added to a executor, the
executor might not be able to finish processing all the
components within the cycle time, causing a violation of the
timeliness of the components. To prevent this violation, each
executor is monitored to detect violations. When a violation is
detected at a component (referred to as a failed component), all
the other components allocated to the same executor of the
failed component migrate to a new executor and continue their
execution. The failed component is still executed because it
may finish its execution.

V. Development Tools

In general, making a component from scratch without any
dedicated development tools is very time-consuming and error-
prone. It seems necessary, therefore, to provide at least a tool
for authoring atomic components and a tool for composing
components. We provide two tools that run as plug-ins for the
eclipse IDE [24], and therefore, can be installed and used on
any OS platforms wherever eclipse is installed.

1. Component Authoring Tool

The user needs to specify the port interfaces, callback

ETRI Journal, Volume 32, Number 5, October 2010 Choulsoo Jang et al. 651

Fig. 5. Component authoring tool.

functions, and a component profile when making an atomic
component. The component authoring tool helps users to add
implementations of callback functions and user-defined codes
without any concern regarding various relationships between
port interfaces and conformances defined in the component
model, for example.

The component authoring tool runs as a plug-in into the
eclipse C/C++ development tools (CDT). It supports the GCC
and Microsoft Visual C++ compilers.

Figure 5 depicts diagram-based and graphic-based wizards
of the tool. Via either a diagram-based or graphic-based wizard,
the tool obtains required information about a component step
by step from the component developer, and generates an XML
component profile and C++ files for the component. The tool
also produces a proxy code for the required ports and a
skeleton code for the provided ports. These codes encapsulate
the supporting communication middleware with connectors, so
that developers can develop a component without a
middleware dependent code. The proxy code transmits a
request to the provided port connected to it. The skeleton code
receives and delegates requests to its method. Many other
codes for registering methods to the component, interface
dispatching, and templates for user-defined methods are also
automatically generated. Therefore, the user only needs to
implement the callbacks and user-defined methods in the
generated template source code.

Compiling of the code yields a component binary file as a
shared library (either as the dynamic link library on MS
Windows or shared object on Linux). Packaging this
component binary and its XML component profile completes
the authoring process. The package is ready for use by the
component composer.

In addition, the tool supports debugging on an atomic
component. It supports execution control (suspend, resume,
and stop), stepping-in/over the code, and monitoring and
evaluating variables.

Fig. 6. Component composer.

2. Component Composer

The component composer is used for building robot
applications by composing components. It has a local
repository to store components and imports component
packages from the component authoring tool. The application
developer drags and drops components onto the main diagram
and connects ports to build an application, as shown in Fig. 6.

It validates the data or service types of ports and lets them be
connected only if they have the same type, which need to be
shared between connected components.

A composite component can also be created, as shown in Fig.
6, by putting individual components into the composite
component and connecting their ports to those of the composite
component. The connection information is stored in the
application profile generated automatically by the tool. In this
way, external requests or data/events to the composite
component can be delegated to the inner components, and vice
versa.

The tool can remotely control and monitor multiple
component execution engines simultaneously. The components
on the main diagram are assigned to an execution engine by
dragging the engine node onto them. Finally, the application
profile and components are packaged and deployed to the
component execution engine on a robot via a network.

VI. Analysis and Application

This section analyzes the performance of port
communication and shows the results of a comparison with
other robotic software platforms and application to commercial
robots to show the feasibility of the OPRoS platform.

1. Port Communication Analysis

The robot developer needs to know the latency time of port-

652 Choulsoo Jang et al. ETRI Journal, Volume 32, Number 5, October 2010

to-port communication due to the fact that most robotic
services have time constraints. A port communication type is
either local or remote. In the case of local port communication,
a sender component is connected to a receiver component, and
both are in the same computing node. We optimized the
communication by using memory copy instructions so that the
communication overhead is minimized. In the case of remote
port communication, the sender and receiver components need
to use network communication, resulting in network
connection overhead, data encapsulation overhead, and so on.

Evaluations were done with diverse variations on port types
(data, event, and service), data sizes (an integer, a vector of
million integers), and topologies. The topology configuration is
represented as x:y, where x is the number of senders and y is the
number of receivers. Depending on data types and sizes, a
sender component sends an integer data or a vector of a million
integers (via data or event port), or calls a function (via a
service port) with the relevant argument. All tests were
performed on a laptop computer with a 2.53 GHz Intel dual-
core, 4 GB RAM, and Windows Vista OS. In the tests, M and
N are 10. The remote tests were performed on a local loop back
network connection in order to minimize other network
interference. The results were averaged from evaluations.

Table 1 shows the results of the communication tests. The
amount of time it takes to copy one vector of one million

Table 1. Elapsed times of port tests (ms).

Port
Data Topology

Data Event Service

Benchmark
(a copy of one

million integers)
1:1 local 0.023 0.01 0.002

1:1 remote 2.444 2.985 16.762
7.61

1:M local 0.034 0.036 NA

1:M remote 3.345 1.336 NA
7.61

N:1 local 0.015 0.014 0.002

N:1 remote 1.937 0.692 401.207
7.61

N:M local 0.053 0.032 NA

One
integer

N:M remote 2.799 5.332 NA
7.61

1:1 local 13.387 8.3 16.999

1:1 remote 231.283 114.938 232.413
7.61

1:M local 47.194 89.849 NA

1:M remote 752.07 651.35 NA
7.61

N:1 local 70.43 40.068 132.144

N:1 remote 859.756 880.369 1163.663
7.61

N:M local 343.714 630.744 NA

One
million
integers

N:M remote 6955.456 6562.688 NA
7.61

integers to another vector variable was evaluated as a
benchmark, and its average value was 7.61 ms. Elapsed times
for sending one integer locally for all topological
configurations are at the microsecond level, meaning that local
communication for small data is well optimized compared with
remote communication. Elapsed times for sending a million
integers locally in a “1:1” topology through ports are about
twice that of the benchmark test.

As expected, remote communications take more time than
local tests because they need to encapsulate data and set up the
socket. In particular, remote service port communication takes
much more time mainly due to the fact that the service is
inherently a remote procedure call over a network.

2. Comparison with Other Platforms

Today’s service robotics market is often compared to the
early PC market. Many companies have released robotic
software platforms with the hope of building a standard robotic
software platform. These platforms are competing and are
incompatible with each other just like the early PC market [25].
They provide runtime environments, drag-n-drop graphical
development tools, simulation environments, and operator
control units.

Table 2 shows comparison results of the OPRoS component
platform with other robot software platforms. Because the
platforms target various robots ranging from toy-like robots to
industrial or military robots, and the users vary from end-users
to skilful robot engineers, it is quite difficult to say what the
best approach is. Nevertheless, we argue that OPRoS has rich
options for developers.

First of all, OPRoS is an open-source project and therefore
free of charge for non-commercial use. It supports both
Windows and Linux, which are regarded as the most widely
used operating systems in service robots whereas some other
platforms operate on a specific operating system. OPRoS will
support more operating systems including real-time operating
systems such as QNX for real-time processing.

Second, OPRoS is based on distributed component
architecture having ports supporting various execution
semantics including remote procedure calls and data/event
flow control, which are partially supported in many other
platforms.

Third, OPRoS is not geared toward any specific robot S/W
architecture. Thus, the granularity of an OPRoS component
can be at any level. By composing components of various
levels, a higher level component is created. However, some
platforms are dependent on a specific architecture and they
cannot support functional expansion of components by
composing them.

ETRI Journal, Volume 32, Number 5, October 2010 Choulsoo Jang et al. 653

Table 2. Comparisons of robotic software platforms (updated from [25]).

 MSRDS MARIE MIRO
RT-

Middleware OROCOS ROS
PEIS

ecology
Player
& stage

ERSP 3.1 Urbi
Mobile
Robots

iRobot
Aware OPRoS

Open source No Yes Yes Yes Yes Yes Yes Yes No Partial No No Yes

Windows Yes No No Yes No No Yes
Yes

(simul.
only)

Yes Yes Yes Unknown Yes

Linux No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Distributed

services
comm.

Yes Yes Yes Yes Yes Yes Yes Yes No Yes No Yes Yes

Robot SW
architecture
independent

Yes Yes No Yes Yes Yes Yes No No Yes No No Yes

Data/event
flow control Yes Yes

Event
driven Yes Yes Yes Yes Yes Yes No Yes Yes Yes

Remote
procedure call

control
Yes Yes Yes Yes Yes Yes Yes No No Yes No Yes Yes

Composite
component No No No Yes No No No No Yes No No No Yes

Graphical
drag-n-drop

IDE
Yes Yes No Yes No No No No Yes Yes No No Yes

Simulation
environment Yes Yes No No No Yes

Yes
(play&
stage)

Yes No
Yes

(Webots) Yes Yes Yes

Middleware
transparency No proprietary No No No proprietaryproprietaryproprietaryproprietaryproprietary proprietary proprietary Yes

Fault-
tolerance No No No No No No No No No No No Yes Yes

Real-time No No No
Yes

(ARTLinux) Yes No No No No No No No Planned

Fourth, OPRoS also provides development environments
such as a GUI-based interactive component authoring tool, a
drag-and-drop graphical component composer, a simulator,
and about 80 reusable device and algorithm components
including navigation, arm control, and face recognition. Robot
software developers can exploit these development
environments to develop components and robot services with
ease compared with other platforms. In addition, middleware
independent connector promotes easier developing.

Fifth, OPRoS supports a fault tolerance mechanism to
prevent performance deterioration caused by the faults of a
component and a callback mechanism to cope with the errors
unlike some other platforms.

Finally, we have plans to enable OPRoS to support a real-
time scheduling capability, which is supported by few
platforms. Currently, OPRoS supports soft real-time only by
using timer mechanism on MS-Windows with the time

resolution of 5 ms or so depending on CPUs and the number of
other processes. Furthermore, it will be designed to support a
hard real-time scheduling capability by intercepting timer
interrupts in the kernel layer of the operating system.

None of the robot software platforms fully satisfies all the
requirements as described in Table 2. However, we argue that
OPRoS has richer features for wide adoption and enhanced
applicability to diverse fields than other software platforms.

3. Application to Commercial Robots

In order to verify the usefulness of the OPRoS platform, we
applied it to commercial service robots. First, a robot
application is deployed to several different types of robots to
verify the reusability of OPRoS components. The second
experiment is for showing OPRoS’s support for distributed
components by the cooperation of multiple robots.

654 Choulsoo Jang et al. ETRI Journal, Volume 32, Number 5, October 2010

A. Common Reusable Components

In this experiment, a robot application is composed of
common OPRoS components, as shown in Fig. 7. The
FaceDetector component processes images from the Camera
component periodically. When it detects the face of a human,
the robot approaches the person, detecting collisions with
obstacles with a BumperSensor component. Both the
FaceDetector and BumperSensor components are fused into
the RobotMove component, which coordinates the robot via
the WheelControl service port. The RobotProcessor
component is a kind of proxy component connected to the
hardware control board of the robot. It sends sensory data via
its SensorOut data port and controls the robot’s wheel when
requested via the WheelControl service port from the
RobotMove component. Every component has two additional
provided service ports for monitoring and controlling by the
component container. These ports are automatically attached
by the authoring tool.

The application is deployed to several commercial robots:
iRobot Create, iRobiQ of YujinRobot, and ED-7270 from ED
Corporation. As iRobot Create has a mobile robot platform
without any computational device, a laptop computer with a
USB camera is attached to it for image processing and for

Fig. 7. Common application.

Face
Detector

Bumper
Sensor

Robot
Processor

Robot
Move

Camera

SensorOut

ImageIn EventOut

EventOut

WheelControl

WheelControl

EventIn
Control Monitor

ImageOut

SensorIn

Monitoring port
Controlling port

Required service port
Provided service port

Input data port Input event port
Output data port Output event port

Fig. 8. Results of porting a common application to commercial
robots: (a) iRobot Create, (b) Yujin Robot iRobiQ, and (c)
ED 7270.

(a) (b) (c)

executing the component execution engine. The other robots
have an OPRoS component execution engine directly inside
them.

There is one essential problem that has to be solved in this
experiment. As each robot has its own proprietary APIs for its
hardware devices, these APIs cannot be directly used in
reusability-enhanced components. To tackle this problem,
proprietary APIs are wrapped with a common robot interface
set (CRIS). Hence, the components accessing the robot’s
devices use CRIS to control hardware devices [26].

Figure 8 shows that the OPRoS components provide exactly
the same services in different robots without any additional
effort if they use the CRIS APIs.

B. Multi-Robot Cooperation

This experiment is to show that the OPRoS platform can be
used in a distribution environment by applying it to multiple
robots for a quiz game application. In the quiz game,
Aldebaran’s Nao robot plays as a coordinator that remotely

Fig. 9. Quiz applicaion.

Quiz
Controller

PlayerControl

Quiz
Driver

Robot
Processor

Dancing

Music
Player

WheelControl CeremonyEvent

Coordinator
QuizPlayerEvent

Quiz
Announcer

QuizControl

Monitoring port
Controlling port

Required service port
Provided service port

Input data port Input event port
Output data port Output event port

Nao

iRobiQ

ED7270 Tetra

E3 Create

Fig. 10. Results of a quiz game using multiple robots: (in the
upper left figure, from left to right) Create, Tetra, ED
7270, E3, Nao, and iRobiQ.

ETRI Journal, Volume 32, Number 5, October 2010 Choulsoo Jang et al. 655

guides iRobiQ who is an announcer and poses questions. Other
robots – iRobot’s Create, Roboware’s E3, ED 7270, and Dasa’s
Tetra compete to be the final winner.

As depicted in Fig. 9, the Coordinator component of Nao sends
a request via a QuizControl service port to the remote
QuizAnnouncer component of iRobiQ for announcing a question
with text-to-speech (TTS) and a monitor connected to it. The
QuizAnnouncer component returns the answer of the question to
the Coordinator component. After announcing of a question, the
Coordinator component sends an event to the QuizController
component of the player robots via its QuizPlayerEvent port
remotely. Then, each QuizDriver component of the player robots
chooses an answer either ‘O’ or ‘X’ arbitrarily and moves to the
chosen answer by using the RobotProcessor component
described in the previous experiment. Next, the Coordinator
component sends another event enveloping the correct answer of
the question. Each player robot performs a ceremony using
Dancing and MusicPlayer components if its answer is correct,
otherwise it is out of the game and moves outside by using the
RobotProcessor component.

Figure 10 shows snapshots of the robots cooperating for the
game. This experiment verifies that OPRoS can be easily used
in distributed environments.

VII. Conclusion

This paper introduced a robot component platform called
OPRoS. The platform consists of specifications of a
component model, a component authoring tool, a component
composer, and a component execution engine. It supports
various design patterns and execution semantics essential in
robot software development, empowering robot developers to
build a distributed component and to compose applications
with the help of the authoring tool and component composer. It
also provides various infra-services for components so that
developers can concentrate their effort on the application logic
itself, resulting in an efficient development of robot services.

A communication performance analysis and comparison
with other robotic software platforms are expected to give
developers information on choosing appropriate platforms for
their robots.

Further research is necessary on the following topics.
Currently, the OPRoS component platform does not support
real-time scheduling. Periodic execution of components suffers
from time variations mainly due to the non real-time scheduler
of general purpose operating systems. However, it is necessary
to support hard real-time scheduling capability in some cases.
The component authoring tool needs to support remote
debugging, and the component composer needs to support
browsing and downloading components from a global

component repository.
As an open source project, the OPRoS component platform

is open to the public through a web site
(http://www.opros.or.kr). Through this site, the platform is
expected to be enhanced by many contributors.

References

[1] S.I. Lee et al., “Issues and Implementation of a URC Home
Service Robot,” 16th IEEE Int. Conf. Robot Human Interactive
Commun., 2007, pp. 570-575.

[2] D. Brugali and P. Scandurra, “Component-Based Robotic
Engineering,” IEEE Robot. Autom. Mag., vol. 16, no. 4, 2009, pp.
84-96.

[3] I. Crnkovic, Component-Based Approach for Embedded Systems,
New York: IEEE Press, 1994.

[4] EJB. Available: http://java.sun.com
[5] .NET. Available: http://www.microsoft.com/net/
[6] OMG, “Common Object Request Broker Architecture (CORBA/

IIOP),” formal/2008-01-08, 2008.
[7] OMG, “Robotic Technology Component Specification,” formal/

08-04-04, 2008.
[8] J. Jackson, “Microsoft Robotics Studio: A Technical Introduction,”

IEEE Robot. Autom. Mag., vol. 14, no. 4, 2007, pp. 82-87.
[9] C. Côté et al., “Robotic Software Integration Using MARIE,” Int.

J. Advanced Robot. Syst., vol. 3, no. 1, 2006, pp. 55-60.
[10] H. Utz et al., “Miro-Middleware for Mobile Robot Application,”

IEEE Trans. Robot. Autom., vol. 18, no. 4, 2002, pp. 493-497.
[11] N. Ando et al., “RTMiddleware: Distributed Component

Middleware for RT (Robot Technology),” IEEE/RSJ Int. Conf.
Robots and Intelligent Systems, 2005, pp. 3555-3560.

[12] H. Bruyninckx, “Open Robot Control Software: The OROCOS
Project,” Proc. IEEE Int. Conf. Robot. Autom., 2001, pp. 21-26.

[13] ROS, Available: http://www.ros.org/wiki/
[14] A. Saffiotti and M. Broxvall, “PEIS Ecologies: Ambient

Intelligence Meets Autonomous Robotics,” Int. Conf. Smart
Objects and Ambient Intelligence, 2005, pp. 275-280.

[15] B.P. Gerkey, R.T. Vaughan, and A. Howard, “The Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor Systems,”
Proc. Int. Conf. Advanced Robotics, 2003, pp. 317-323.

[16] M.E. Munich, J. Ostrowski, and P. Pirjanian, “ERSP: A Software
Platform and Architecture for the Service Robotics Industry,”
IEEE/RSJ Int. Conf. Intelligent Robots Systems, 2005, pp. 460-
467.

[17] J.C. Baillie, “URBI: Towards a Universal Robotic Body
Interface,” The 4th IEEE/RAS Int. Conf. Humanoid Robots, vol. 1,
2004, pp. 33-51.

[18] K. Konolige “Saphira Robot Control Architecture,” SRI Int., 2002.
[19] Developers-Aware 2.0 Robot Intelligence Software. Available:

http://www.irobot.com/gi/developers/Aware/

656 Choulsoo Jang et al. ETRI Journal, Volume 32, Number 5, October 2010

[20] B.Y. Song et al., “An Introduction to Robot Component Model for
OPRoS,” Int. Conf. Simulation, Modeling Programming for
Autonomous Robots Workshop, 2008, pp. 592-603.

[21] R. Brooks, “A Robust Layered Control System for a Mobile
Robot,” IEEE J. Robot. Autom., vol. 2, no. 1, 1986, pp.14-23.

[22] J. Connell, “SSS: A Hybrid Architecture Applied to Robot
Navigation,” IEEE Conf. Robotics Automation, 1992, pp. 2719-
2724.

[23] M.E. Shin and J.H. Ahn, “Self-Reconfiguration in Self-Healing
Systems,” Third IEEE Int. Workshop Eng. Autonomic
Autonomous Syst., 2006, pp. 89-98.

[24] Eclipse. Available: http://www.eclipse.org
[25] M. Somby, “Updated Review of Robotics Software Platform,”

Available: http://www.linuxfordevices.com/c/a/Linux-For-Devices-
Articles/Updated-review-of-robotics-software-platforms

[26] C.S. Jang et al., “A Development of Software Component
Framework for Robotic Services,” 4th Int. Conf. Computer
Sciences Convergence Inf. Technol., 2009, pp. 1-6.

Choulsoo Jang received the BS in computer
engineering from Inha University, Incheon,
Korea, in 1995, and the MS in information and
communication engineering from Gwangju
Institute of Science and Technology (GIST),
Gwangju, Korea, in 1997, and is currently
working toward the PhD degree in computer

engineering at Chungnam National University, Daejeon, Korea. Since
1997, he has been with ETRI. He has researched in the field of intelligent
robot control systems. His recent interests include robot software
platforms, embedded systems, and real-time systems.

Seung-Ik Lee received his MS and PhD in
computer science from Yonsei University, Seoul,
Korea, in 1997 and 2001, respectively. He is
currently working for ETRI, Korea. He has
published several papers on fuzzy logic control,
evolutionary learning, and robot software and
control. His research interests include

evolutionary computation, fuzzy logic, and intelligent robot control and
software.

Seung-Woog Jung has been a senior member of
the engineering staff at ETRI, Korea, since 1998.
He received his BS in computer science from
Chonnam University, Korea, in 1996, and the
MS degree in information and communications
from Gwangju Institute of Science and
Technology (GIST), Gwangju, Korea, in 1998.

His research interests include robot S/W architecture, component-based
robot application development, and robot middleware.

Byoungyoul Song received his BS and MS in
electronics from Chonbuk National University,
Jeonju, Korea, in 1995 and 1997, respectively. He
is currently a senior member of the engineering
staff of the Intelligent Robot Control Research
Team at ETRI, Korea. His research interests are
robotics and embedded systems and software

engineering.

Rockwon Kim received his BS and MS in
computer science from Chungbuk National
University, Cheongju, Korea, in 1998 and 2000,
respectively. He is currently pursuing the PhD in
industrial and system engineering at KAIST,
Daejeon, Korea. He is currently a senior member
of the engineering staff of the Intelligent Robot

Control Research Team at ETRI, Korea. His general research interests
include robot task control, logic systems, and embedded systems and
software engineering.

Sunghoon Kim received his BS and MS in
electronics from Kwangwoon University, Seoul,
Korea, in 1995 and 1997, respectively, and is also
working toward the PhD at the College of
Information and Communications, Hanyang
University, Seoul, Korea. He is currently a team
manager of the Intelligent Robot Control

Research Team at ETRI, Korea. His research interests include robot
intelligence, robot software engineering, especially for military robots.

Cheol-Hoon Lee received the BS in electronics
engineering from Seoul National University,
Seoul, Korea, in 1983, and the MS and PhD in
computer engineering from KAIST, Daejeon,
Korea, in 1988 and 1992, respectively. From
1983 to 1994, he worked for Samsung
Electronics Company in Seoul, Korea, as a

researcher. From 1994 to 1995 and 2004 to 2005, he was with the
University of Michigan, Ann Arbor, as a research scientist at the Real-
Time Computing Laboratory. Since 1995, he has been a professor in the
Department of Computer Engineering, Chungnam National University,
Daejeon, Korea. His research interests include parallel processing,
operating systems, real-time systems, and fault tolerant computing.

