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A component is a reusable and replaceable software 
module accessed through its interface. Component-based 
development is expected to shorten the development 
period, reduce maintenance costs, and improve program 
reusability and the interoperability of components. This 
paper proposes a new robot software component platform 
in order to support the entire process of robot software 
development. It consists of specifications of a component 
model, component authoring tool, component composer, 
and component execution engine. To show its feasibility, 
this paper presents the analysis results of the component’s 
communication overhead, a comparison with other 
robotic software platforms, and applications in 
commercial robots. 
 

Keywords: Robot software, component, component 
platform, authoring tool, component composer, 
component execution engine, OPRoS. 

                                                               
Manuscript received Mar. 15, 2010; revised June 4, 2010; accepted June 22, 2010. 
This work was supported by the Industrial Foundation Technology Development Program of 

MKE/KEIT, Rep. of Korea [KI001800, Development of Open Platform for Robotic Services 
(OPRoS) Technology]. 

Choulsoo Jang (phone: +82 42 860 6726, email: jangcs@etri.re.kr), Seung-Ik Lee (email: 
the_silee@etri.re.kr), Seung-Woog Jung (email: swjung@etri.re.kr), Byoungyoul Song (email: 
sby@etri.re.kr), Rockwon Kim (email: rwkim@etri.re.kr), and Sunghoon Kim (email: 
saint@etri.re.kr) are with the IT Convergence Technology Research Laboratory, ETRI, 
Daejeon, Rep. of Korea. 

Cheol-Hoon Lee (email: clee@cnu.ac.kr) is with the Department of Computer Engineering, 
Chungnam National University, Daejeon, Rep. of Korea. 

doi: 10.4218/etrij.10.1510.0138 

I. Introduction 

Not only do robots have many different types of sensors, 
actuators, and degrees of freedom, but also their services are 
becoming more and more sophisticated allowing them to run 
autonomously, while providing complex services in an 
unknown or partially known environment [1]. Unfortunately, 
their services are often not reusable even in slightly different 
application scenarios because they are tied to specific robotic 
hardware, processing platforms, and communication 
infrastructures. Also, the assumptions and constraints about 
tasks and operational environments are hidden and hard coded 
in the software implementation [2]. This increased complexity 
has lead to increasing demands for modularity, productivity, 
reusability, integration, and maintenance. 

Component technology seems to be an attractive approach to 
meet the demands in the robotic software field [3]. A 
component is a reusable and replaceable software module that 
enables complex functions to be developed easily. The main 
focus of component-based development is concerned with the 
assembly of pre-existing software components into larger 
pieces. Nevertheless, software reuse and component-based 
development are not yet state-of-the-art practice software 
development approaches in robotics [2]. 

Widely used component technologies such as EJB [4], .NET 
[5], and the CORBA [6] component model, have paid much 
attention to business applications. They seem to be relatively 
heavyweight and complex. Also, they do not address issues 
such as real-time applications, fault management, or other 
functionalities that are important for robots.  

Recently, some research has actively been conducted on 
component-based robot software platforms [7]-[19]. They can 
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be categorized into three groups: the middleware-based 
component platform, robot device interface platform, and robot 
software architecture platform.  

MSRDS [8], MARIE [9], Miro [10], RT-Middleware [11], 
OROCOS [12], ROS [13], and PEIS Ecology [14] are 
middleware-based component platforms that manage 
components and their communication with their component 
execution engine for multipurpose robot control software. 
However, they focus on the middleware framework, so they do 
not sufficiently support related tools to component development 
and its simulation. The robot device interface platforms such as 
Player [15] aim at providing interfaces for accessing robot 
sensors and actuators over the network. ERSP [16], Urbi [17], 
MobileRobots [18], and iRobot Aware [19] are robot software 
architecture platforms that provide layered software architecture.  

We argue that a good robot software platform needs to offer 
much more than pure middleware such that it supports the full 
development lifecycle for robot software. To meet the above 
mentioned requirements, this paper proposes a new component 
technology called open platform for robotic services (OPRoS) 
[20]. It supports the full development lifecycle for robot 
software by providing a robot software component model, 
component execution engine, various middleware services, 
development tools, and a simulation environment. 

The rest of this paper is organized as follows. A detailed 
description of a good middleware-based component platform 
for robot software is given in section II. In section III, the 
OPRoS component model is introduced. Section IV explains 
the component execution engine, and section V shows its 
development tools for authoring and composing components. 
An analysis of the OPRoS component platform and its 
application for commercial robots follows in section VI. 
Section VII concludes this paper.  

II. Requirements Analysis 

In this section, we analyze the desirable and required 
properties of a component software platform for robots, which 
is intended as a basis for a new component platform. 

First, a component software platform for robots should 
support diverse operating systems such as MS Windows, 
Linux, and real-time operating systems because robot systems 
usually run under various operating systems. 

Second, the component software platform needs to support 
distributed communications. A robot system is frequently 
distributed in order to expand computational power or to 
interact with its external servers.  

Third, it is necessary that a component software platform be 
architecture independent. It should not rely on any specific 
robot software architectures such as Sense-Plan-Action, 

Subsumption [21], Hybrid [22], and other architectures, so that 
it can be applied to as many robots as possible, with whatever 
architecture they take. 

Fourth, a component software platform for robots needs to 
support various execution semantics. Robots sometimes 
execute their jobs periodically as well as non-periodically for a 
classical control loop, method invocation for higher level 
control, or event-based stimulus-response.  

Fifth, it is desirable for the components to be as simple as 
possible, but at the same time they should be composable so a 
more complex component can be assembled with other 
components. It would be of great help if we could compose 
several components so that they cooperate to achieve a shared 
goal.  

Sixth, it should be easy to use. Robot developers usually like 
using their familiar development methodologies rather than 
learning a new one. Therefore, it is necessary to provide a 
simple component model, its development tools, and reusable 
service building blocks for easy use. In addition, transparency 
in supporting communication middleware is required for easy 
use because robot software developers are usually unwilling to 
do middleware dependant programming. 

Finally, a component software platform for robots should have 
fault detection, recovery, real-time, and QoS support. Robots are 
embedded systems, and they often run for a very long period 
(hours, months, or years). They often run in environments that 
require prompt responses, and sometimes they need to run 
autonomously without any human interference. 

III. OPRoS Component Model 

This section introduces the OPRoS component model 
satisfying the previously-mentioned requirements.  

1. Network Distributed  

OPRoS components are reusable and replaceable software 
modules that do not need recompilation. They are distributed on 
a network. They run loosely coupled and independently, often 
representing a robot’s devices. A robotic service is composed of 
these distributed components in a similar fashion as a robot 
hardware system is assembled with devices. A communication 
infrastructure including connection management of the 
components is provided by the component execution engine that 
is a runtime environment of the OPRoS components. By the 
separation of network management from component logic, 
developers can focus on the logic that they intend to develop 
without additional concerns about network management. 

The granularity of a distributed OPRoS component can be at 
any level. For example, it can be at device level, algorithm 
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Fig. 1. OPRoS component model. 
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level, or coordination level, and so on, and it is up to 
component developers to decide which one is appropriate. 
With the distributed components of diverse granularities, a flat 
or hierarchical composition manner might be used for various 
robot software architectures. 

2. Ports as Interface  

In component-based robot software, components 
communicate with each other via connections. A connection is 
established from a port of a sending component to a port of a 
receiving component. We have observed that robot software 
developers usually use inter-component communication for 
sending or receiving three types of information: method 
invocation, data, and events.  

To support these features, the OPRoS component model has 
three types of corresponding ports, that is, service, data, and 
event ports. A component has one or more ports of these types. 
Figure 1 depicts the OPRoS component model.  

A service port allows other components to invoke its 
methods. It has an interface definition of a set of methods. A 
service port is either a provided or required type. A provided 
service port provides method services to other components. 
Methods of a provided service port are mapped to the user 
defined methods in the component. A required service port 
plays its role as a proxy to the user defined method of the 
connected component.  

A data port is for exchanging data. It is either for input or 
output. An output data port sends data to input data ports of 
other components. Both the input and output should be of the 
same data type for a data exchange. A data port can have either 
a queue to store the received data or a single-sized buffer to 
store the most recently received datum. The received data are 

processed in the onExecute() method of a component in a 
periodic or non-periodic fashion. 

An event port is for transmitting events. Although data ports 
and event ports are similar in that they transmit structured data, 
events are processed immediately by the network service 
thread with the onEvent() method, whereas the received data of 
a data port are buffered and then processed later by the 
component service thread. 

Output ports for data/events do not block when transmitting 
data/events whereas service ports support blocking and non-
blocking invocation according to the method types. 

3. Execution Mode 

The execution mode of a component is either periodic, non-
periodic, or passive. In periodic mode, the onExecute() callback 
method of a component is called periodically to process data or 
execute its algorithm. It is useful for robot device components as 
they typically run periodically. Users can specify the execution 
period of a component in its component profile.  

The onUpdate() method of the components of an equal 
period are invoked within the period right after all of their 
onExecute() methods are called. In contrast to the onExecute() 
method, which usually performs the component’s primary 
logic and finishes as soon as possible, the onUpdate() method 
is intended for relatively expensive computational operations. 
This two-phase execution can minimizes latency and jitter, 
which is critical in real-time applications. 

The non-periodic mode is used when the expected execution 
time of the onExecute() method is quite long or unpredictable. 
One thread is dedicated to each of the non-periodic 
components. A component in this mode iteratively continues its 
execution within the onExecute() method and doesn’t release 
its dedicated thread until its destruction. 

A component in passive mode has neither the onExecute() 
callback method nor its own thread. Instead, it is activated only 
when a stimulus such as an event or a method request arrives 
from other components.  

4. Class Diagram  

A user component should inherit from a base class called 
“component” of OPRoS as shown in Fig. 2. The component 
has one or more ports to interact with other components. It 
again inherits various interfaces such as lifecycle, port 
management, and property. These interfaces are used by the 
component container in order to manage the components. A 
user component inheriting the base class is realized by 
overriding the inherited callback functions and adding user 
defined methods. User defined methods are invoked by the 
network service thread upon receiving a request from client 
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Fig. 2. UML class diagram of an OPRoS component. 
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whereas the methods of parent interfaces and callback methods 
of a component are invoked by the container.  

The active execution of a component, either in periodic or 
non-periodic mode, is accomplished through the executor 
managed by the component container. The container registers 
components to the executor, and the executor runs the 
registered components, which have an equal period and the 
same priority, with an allocated thread from the container.  

5. Lifecycle Management 

A component runs through a sequence of states during its 
lifecycle as shown in Fig. 3. When a component’s instance is 
created, it is in a Created state. Its state becomes a Ready state 
after onInitialize() is invoked by the container. The onStart() 
method leads the component into an Active state where it 
iterates the onExecute() and onUpdate() methods. When the 
onStop() method is called, it goes into an Inactive state and its 
execution is suspended until activated again by the onStart() 
method.  

If an error occurs, the component transits into an Error state 
and its onError() callback is invoked by the container to deal 
with the error. When it recovers from the error, the component 

 

Fig. 3. State transition diagram of an OPRoS component. 
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goes into the Ready state right after the onRecover() method is 
invoked. A component instance is destroyed after its 
onDestroy() method is invoked. 

 6. Component Composition  

Obviously, it is helpful if we can utilize existing components 
when making a new component in that this reduces the 
development time and errors that might occur when creating 
the component from scratch. This naturally leads to the types of 
components: atomic and composite. 

An atomic component is made solely, and is mainly devised 
to abstract a low-level device or algorithm. 

A composite component is composed of other components 
(either atomic or composite). A composite component accesses 
the ports of each contained component. When an interface of 
the composite component is called, it is delegated to a 
corresponding contained component. In this way, a composite 
component abstracts the interfaces of inner components so that 
users can access simplified interfaces. 

7. XML Profiles 

A component’s port types, execution semantics, properties, 
and so on are described in an XML file called a component 
profile. The profile is interpreted by the component execution 
engine in order to operate the corresponding component. 



650   Choulsoo Jang et al. ETRI Journal, Volume 32, Number 5, October 2010 

  

Fig. 4. OPRoS component execution engine. 
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The component’s APIs are described in a separated service 
profile as a list of method signatures provided by a service port 
of a component. Also, the data profile describes data types or 
data structures used in method calls or data transfer between 
components. The two profiles are similar to CORBA IDL in 
the point that they describe interfaces and data types.  

An application profile describing the network configuration 
of distributed nodes, references to participating components, 
and port connections between components is given to the 
engine for running a robot application. 

IV. Component Execution Engine 

The component execution engine manages and executes 
components in accordance with the application profile and 
each component’s profile. It relieves robot developers from 
thread management, resource allocation, and state management 
so that they can concentrate on the application logic. 

The engine has a component manager, component container, 
and component service as shown in Fig. 4. It explores and 
deploys components from a component composer, executes 
components harmonically, manages their lifecycle and states, 
connects components using the component container, and 
supports services such as monitoring and fault tolerance.  

The component container interprets its application profile, 
loads participating components onto memory, establishes their 
connections, and activates the components in accordance with 
each component profile. When it comes to its turn, an activated 
component runs on an executor according to the component 
profile. The executor is allocated a thread by the scheduler 
module of the container. The scheduler allocates the same 
executor to the components of an equal period and priority to 
prevent threads from unnecessary context switching so that the 
performance is not weakened. The scheduler allocates one 

dedicated executor and a thread to each non-periodic 
component and executed it only once.  

The component execution engine provides an appropriate 
abstraction of operating systems. The abstraction presents 
portable wrapper classes of the common functionalities such as 
thread functions, thread synchronization functions, and file I/O 
functions that are offered by any operating system. The 
wrapper classes encapsulate the system functions offered by 
the OS to which the code needs to be ported.  

In addition to the OS abstraction classes, the engine provides 
connectors which are the abstraction class for the I/O 
communication to allow robot components to communicate 
across different various networks. The engine allocates a 
connector to establish the connection between two interacting 
ports. Connectors provide network connection management, 
marshalling functions, remote method calls, and data transfer 
functions. They can be bound to various network protocols or 
communication middleware. Currently, the engine provides 
three types of connectors: SocketConnector for TCP/IP, 
UPnPConnector for UPnP, and CorbaConnector for CORBA. 

The execution engine should not fall into failure on faults or 
anomalies. The self-reconfigurable fault tolerance module 
detects faults or anomalies, and repairs them autonomously 
[23]. In particular, it focuses on the reliability of the threads 
encapsulated in the executor. Each thread processes user 
components periodically at the same cycle. As new 
components of the same cycle time are added to a executor, the 
executor might not be able to finish processing all the 
components within the cycle time, causing a violation of the 
timeliness of the components. To prevent this violation, each 
executor is monitored to detect violations. When a violation is 
detected at a component (referred to as a failed component), all 
the other components allocated to the same executor of the 
failed component migrate to a new executor and continue their 
execution. The failed component is still executed because it 
may finish its execution.  

V. Development Tools 

In general, making a component from scratch without any 
dedicated development tools is very time-consuming and error-
prone. It seems necessary, therefore, to provide at least a tool 
for authoring atomic components and a tool for composing 
components. We provide two tools that run as plug-ins for the 
eclipse IDE [24], and therefore, can be installed and used on 
any OS platforms wherever eclipse is installed. 

1. Component Authoring Tool 

The user needs to specify the port interfaces, callback  



ETRI Journal, Volume 32, Number 5, October 2010 Choulsoo Jang et al.   651 

 

Fig. 5. Component authoring tool.  
 
functions, and a component profile when making an atomic 
component. The component authoring tool helps users to add 
implementations of callback functions and user-defined codes 
without any concern regarding various relationships between 
port interfaces and conformances defined in the component 
model, for example. 

The component authoring tool runs as a plug-in into the 
eclipse C/C++ development tools (CDT). It supports the GCC 
and Microsoft Visual C++ compilers.  

Figure 5 depicts diagram-based and graphic-based wizards 
of the tool. Via either a diagram-based or graphic-based wizard, 
the tool obtains required information about a component step 
by step from the component developer, and generates an XML 
component profile and C++ files for the component. The tool 
also produces a proxy code for the required ports and a 
skeleton code for the provided ports. These codes encapsulate 
the supporting communication middleware with connectors, so 
that developers can develop a component without a 
middleware dependent code. The proxy code transmits a 
request to the provided port connected to it. The skeleton code 
receives and delegates requests to its method. Many other 
codes for registering methods to the component, interface 
dispatching, and templates for user-defined methods are also 
automatically generated. Therefore, the user only needs to 
implement the callbacks and user-defined methods in the 
generated template source code.  

Compiling of the code yields a component binary file as a 
shared library (either as the dynamic link library on MS 
Windows or shared object on Linux). Packaging this 
component binary and its XML component profile completes 
the authoring process. The package is ready for use by the 
component composer. 

In addition, the tool supports debugging on an atomic 
component. It supports execution control (suspend, resume, 
and stop), stepping-in/over the code, and monitoring and 
evaluating variables. 

 

Fig. 6. Component composer.  

2. Component Composer 

The component composer is used for building robot 
applications by composing components. It has a local 
repository to store components and imports component 
packages from the component authoring tool. The application 
developer drags and drops components onto the main diagram 
and connects ports to build an application, as shown in Fig. 6. 

It validates the data or service types of ports and lets them be 
connected only if they have the same type, which need to be 
shared between connected components.  

A composite component can also be created, as shown in Fig. 
6, by putting individual components into the composite 
component and connecting their ports to those of the composite 
component. The connection information is stored in the 
application profile generated automatically by the tool. In this 
way, external requests or data/events to the composite 
component can be delegated to the inner components, and vice 
versa.  

The tool can remotely control and monitor multiple 
component execution engines simultaneously. The components 
on the main diagram are assigned to an execution engine by 
dragging the engine node onto them. Finally, the application 
profile and components are packaged and deployed to the 
component execution engine on a robot via a network.  

VI. Analysis and Application 

This section analyzes the performance of port 
communication and shows the results of a comparison with 
other robotic software platforms and application to commercial 
robots to show the feasibility of the OPRoS platform. 

1. Port Communication Analysis 

The robot developer needs to know the latency time of port-
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to-port communication due to the fact that most robotic 
services have time constraints. A port communication type is 
either local or remote. In the case of local port communication, 
a sender component is connected to a receiver component, and 
both are in the same computing node. We optimized the 
communication by using memory copy instructions so that the 
communication overhead is minimized. In the case of remote 
port communication, the sender and receiver components need 
to use network communication, resulting in network 
connection overhead, data encapsulation overhead, and so on. 

Evaluations were done with diverse variations on port types 
(data, event, and service), data sizes (an integer, a vector of 
million integers), and topologies. The topology configuration is 
represented as x:y, where x is the number of senders and y is the 
number of receivers. Depending on data types and sizes, a 
sender component sends an integer data or a vector of a million 
integers (via data or event port), or calls a function (via a 
service port) with the relevant argument. All tests were 
performed on a laptop computer with a 2.53 GHz Intel dual-
core, 4 GB RAM, and Windows Vista OS. In the tests, M and 
N are 10. The remote tests were performed on a local loop back 
network connection in order to minimize other network 
interference. The results were averaged from evaluations. 

Table 1 shows the results of the communication tests. The 
amount of time it takes to copy one vector of one million 
 

Table 1. Elapsed times of port tests (ms). 

Port 
Data Topology 

Data Event Service 

Benchmark 
(a copy of one 

million integers)
1:1 local 0.023 0.01 0.002 

1:1 remote 2.444 2.985 16.762 
7.61 

1:M local 0.034 0.036 NA 

1:M remote 3.345 1.336 NA 
7.61 

N:1 local 0.015 0.014 0.002 

N:1 remote 1.937 0.692 401.207 
7.61 

N:M local 0.053 0.032 NA 

One 
integer 

N:M remote 2.799 5.332 NA 
7.61 

1:1 local 13.387 8.3 16.999 

1:1 remote 231.283 114.938 232.413 
7.61 

1:M local 47.194 89.849 NA 

1:M remote 752.07 651.35 NA 
7.61 

N:1 local 70.43 40.068 132.144 

N:1 remote 859.756 880.369 1163.663 
7.61 

N:M local 343.714 630.744 NA 

One 
million 
integers 

N:M remote 6955.456 6562.688 NA 
7.61 

 

integers to another vector variable was evaluated as a 
benchmark, and its average value was 7.61 ms. Elapsed times 
for sending one integer locally for all topological 
configurations are at the microsecond level, meaning that local 
communication for small data is well optimized compared with 
remote communication. Elapsed times for sending a million 
integers locally in a “1:1” topology through ports are about 
twice that of the benchmark test.  

As expected, remote communications take more time than 
local tests because they need to encapsulate data and set up the 
socket. In particular, remote service port communication takes 
much more time mainly due to the fact that the service is 
inherently a remote procedure call over a network.  

2. Comparison with Other Platforms 

Today’s service robotics market is often compared to the 
early PC market. Many companies have released robotic 
software platforms with the hope of building a standard robotic 
software platform. These platforms are competing and are 
incompatible with each other just like the early PC market [25]. 
They provide runtime environments, drag-n-drop graphical 
development tools, simulation environments, and operator 
control units. 

Table 2 shows comparison results of the OPRoS component 
platform with other robot software platforms. Because the 
platforms target various robots ranging from toy-like robots to 
industrial or military robots, and the users vary from end-users 
to skilful robot engineers, it is quite difficult to say what the 
best approach is. Nevertheless, we argue that OPRoS has rich 
options for developers. 

First of all, OPRoS is an open-source project and therefore 
free of charge for non-commercial use. It supports both 
Windows and Linux, which are regarded as the most widely 
used operating systems in service robots whereas some other 
platforms operate on a specific operating system. OPRoS will 
support more operating systems including real-time operating 
systems such as QNX for real-time processing. 

Second, OPRoS is based on distributed component 
architecture having ports supporting various execution 
semantics including remote procedure calls and data/event 
flow control, which are partially supported in many other 
platforms. 

Third, OPRoS is not geared toward any specific robot S/W 
architecture. Thus, the granularity of an OPRoS component 
can be at any level. By composing components of various 
levels, a higher level component is created. However, some 
platforms are dependent on a specific architecture and they 
cannot support functional expansion of components by 
composing them.
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Table 2. Comparisons of robotic software platforms (updated from [25]). 

 MSRDS MARIE MIRO 
RT-

Middleware OROCOS ROS 
PEIS 

ecology
Player 
& stage

ERSP 3.1 Urbi 
Mobile 
Robots 

iRobot 
Aware OPRoS

Open source No  Yes  Yes Yes Yes Yes Yes Yes No  Partial  No  No  Yes 

Windows  Yes  No  No Yes No  No Yes 
Yes 

(simul. 
only) 

Yes Yes  Yes  Unknown Yes

Linux  No  Yes  Yes Yes Yes Yes Yes Yes Yes Yes  Yes  Yes  Yes 
Distributed 

services 
comm.  

Yes  Yes Yes Yes Yes Yes Yes Yes No  Yes  No  Yes  Yes

Robot SW 
architecture 
independent 

Yes  Yes No Yes Yes Yes Yes No  No  Yes No  No  Yes

Data/event 
flow control Yes  Yes  

Event 
driven Yes Yes Yes Yes Yes Yes No  Yes  Yes  Yes

Remote 
procedure call 

control 
Yes  Yes  Yes Yes Yes Yes Yes No  No  Yes No  Yes  Yes

Composite 
component No  No  No Yes No  No No No  Yes No  No  No  Yes

Graphical 
drag-n-drop 

IDE  
Yes  Yes  No Yes No  No No No  Yes Yes  No  No  Yes

Simulation 
environment Yes  Yes  No No No  Yes 

Yes 
(play&
stage) 

Yes No  
Yes 

(Webots) Yes  Yes  Yes 

Middleware 
transparency No  proprietary No No No  proprietaryproprietaryproprietaryproprietaryproprietary proprietary proprietary Yes

Fault-
tolerance  No  No  No No No  No No No  No  No  No  Yes  Yes

Real-time  No  No  No 
Yes 

(ARTLinux) Yes No No No  No  No  No  No  Planned

 

Fourth, OPRoS also provides development environments 
such as a GUI-based interactive component authoring tool, a 
drag-and-drop graphical component composer, a simulator, 
and about 80 reusable device and algorithm components 
including navigation, arm control, and face recognition. Robot 
software developers can exploit these development 
environments to develop components and robot services with 
ease compared with other platforms. In addition, middleware 
independent connector promotes easier developing.  

Fifth, OPRoS supports a fault tolerance mechanism to 
prevent performance deterioration caused by the faults of a 
component and a callback mechanism to cope with the errors 
unlike some other platforms. 

Finally, we have plans to enable OPRoS to support a real-
time scheduling capability, which is supported by few 
platforms. Currently, OPRoS supports soft real-time only by 
using timer mechanism on MS-Windows with the time 

resolution of 5 ms or so depending on CPUs and the number of 
other processes. Furthermore, it will be designed to support a 
hard real-time scheduling capability by intercepting timer 
interrupts in the kernel layer of the operating system. 

None of the robot software platforms fully satisfies all the 
requirements as described in Table 2. However, we argue that 
OPRoS has richer features for wide adoption and enhanced 
applicability to diverse fields than other software platforms. 

3. Application to Commercial Robots 

In order to verify the usefulness of the OPRoS platform, we 
applied it to commercial service robots. First, a robot 
application is deployed to several different types of robots to 
verify the reusability of OPRoS components. The second 
experiment is for showing OPRoS’s support for distributed 
components by the cooperation of multiple robots.  
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A. Common Reusable Components  

In this experiment, a robot application is composed of 
common OPRoS components, as shown in Fig. 7. The 
FaceDetector component processes images from the Camera 
component periodically. When it detects the face of a human, 
the robot approaches the person, detecting collisions with 
obstacles with a BumperSensor component. Both the 
FaceDetector and BumperSensor components are fused into 
the RobotMove component, which coordinates the robot via 
the WheelControl service port. The RobotProcessor 
component is a kind of proxy component connected to the 
hardware control board of the robot. It sends sensory data via 
its SensorOut data port and controls the robot’s wheel when 
requested via the WheelControl service port from the 
RobotMove component. Every component has two additional 
provided service ports for monitoring and controlling by the 
component container. These ports are automatically attached 
by the authoring tool. 

The application is deployed to several commercial robots: 
iRobot Create, iRobiQ of YujinRobot, and ED-7270 from ED 
Corporation. As iRobot Create has a mobile robot platform 
without any computational device, a laptop computer with a 
USB camera is attached to it for image processing and for 
 

 

Fig. 7. Common application. 
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Fig. 8. Results of porting a common application to commercial
robots: (a) iRobot Create, (b) Yujin Robot iRobiQ, and (c) 
ED 7270. 
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executing the component execution engine. The other robots 
have an OPRoS component execution engine directly inside 
them. 

There is one essential problem that has to be solved in this 
experiment. As each robot has its own proprietary APIs for its 
hardware devices, these APIs cannot be directly used in 
reusability-enhanced components. To tackle this problem, 
proprietary APIs are wrapped with a common robot interface 
set (CRIS). Hence, the components accessing the robot’s 
devices use CRIS to control hardware devices [26].  

Figure 8 shows that the OPRoS components provide exactly 
the same services in different robots without any additional 
effort if they use the CRIS APIs. 

B. Multi-Robot Cooperation 

This experiment is to show that the OPRoS platform can be 
used in a distribution environment by applying it to multiple 
robots for a quiz game application. In the quiz game, 
Aldebaran’s Nao robot plays as a coordinator that remotely  

 

 

Fig. 9. Quiz applicaion. 
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Fig. 10. Results of a quiz game using multiple robots: (in the 
upper left figure, from left to right) Create, Tetra, ED 
7270, E3, Nao, and iRobiQ.  
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guides iRobiQ who is an announcer and poses questions. Other 
robots – iRobot’s Create, Roboware’s E3, ED 7270, and Dasa’s 
Tetra compete to be the final winner.  

As depicted in Fig. 9, the Coordinator component of Nao sends 
a request via a QuizControl service port to the remote 
QuizAnnouncer component of iRobiQ for announcing a question 
with text-to-speech (TTS) and a monitor connected to it. The 
QuizAnnouncer component returns the answer of the question to 
the Coordinator component. After announcing of a question, the 
Coordinator component sends an event to the QuizController 
component of the player robots via its QuizPlayerEvent port 
remotely. Then, each QuizDriver component of the player robots 
chooses an answer either ‘O’ or ‘X’ arbitrarily and moves to the 
chosen answer by using the RobotProcessor component 
described in the previous experiment. Next, the Coordinator 
component sends another event enveloping the correct answer of 
the question. Each player robot performs a ceremony using 
Dancing and MusicPlayer components if its answer is correct, 
otherwise it is out of the game and moves outside by using the 
RobotProcessor component. 

Figure 10 shows snapshots of the robots cooperating for the 
game. This experiment verifies that OPRoS can be easily used 
in distributed environments. 

VII. Conclusion 

This paper introduced a robot component platform called 
OPRoS. The platform consists of specifications of a 
component model, a component authoring tool, a component 
composer, and a component execution engine. It supports 
various design patterns and execution semantics essential in 
robot software development, empowering robot developers to 
build a distributed component and to compose applications 
with the help of the authoring tool and component composer. It 
also provides various infra-services for components so that 
developers can concentrate their effort on the application logic 
itself, resulting in an efficient development of robot services. 

A communication performance analysis and comparison 
with other robotic software platforms are expected to give 
developers information on choosing appropriate platforms for 
their robots. 

Further research is necessary on the following topics. 
Currently, the OPRoS component platform does not support 
real-time scheduling. Periodic execution of components suffers 
from time variations mainly due to the non real-time scheduler 
of general purpose operating systems. However, it is necessary 
to support hard real-time scheduling capability in some cases. 
The component authoring tool needs to support remote 
debugging, and the component composer needs to support 
browsing and downloading components from a global 

component repository.  
As an open source project, the OPRoS component platform 

is open to the public through a web site 
(http://www.opros.or.kr). Through this site, the platform is 
expected to be enhanced by many contributors. 
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