
642   Taewoo Han et al. © 2010           ETRI Journal, Volume 32, Number 4, August 2010 

With the rapid increase occurring in both the capacity and 
density of memory products, test and repair issues have become 
highly challenging. Memory repair is an effective and essential 
methodology for improving memory yield. An SoC utilizes built-
in redundancy analysis (BIRA) with built-in self-test for 
improving memory yield and reliability. This letter proposes a 
new heuristic algorithm and new hardware architecture for the 
BIRA scheme. Experimental results indicate that the proposed 
algorithm shows near-optimal repair efficiency in combination 
with low area and time overheads. 

Keywords: Built-in redundancy analysis (BIRA), memory 
yield, repair efficiency. 

I. Introduction 
Previous studies of built-in redundancy analysis (BIRA) 

methods can be classified into three categories: heuristic 
algorithms, parallel hardware architectures (used for analyzing 
all cases of a fault), and search-tree-based algorithms. Among 
these algorithms, must-repair (MUST) and repair-most (RM) 
[1] are widely used as simple heuristic algorithms in finding the 
repair solution. Local RM (LRM) [2] uses a small local bitmap, 
instead of the existing large fault bitmap, and its RA algorithm 
is RM. Recently, a heuristic BIRA method with a very small 
area overhead [3] was researched, but its repair efficiency is 
lower than RM. Some papers propose all cases of the fault 
search algorithm to obtain optimal repair efficiency. 
Comprehensive real-time exhaustive search test and analysis 
(CRESTA) [4] uses parallel architecture to obtain optimal 
solutions with a short redundancy-analysis (RA) time. Selected 
                                                               

Manuscript received Mar. 24, 2010; revised May 17, 2010; accepted June 3, 2010. 
Taewoo Han (email: twhan@soc.yonsei.ac.kr, phone: +82 2 2123 2775), Woosik Jeong 

(email: woosik.jeong@soc.yonsei.ac.kr), Youngkyu Park (email: hipyk@soc.yonsei.ac.kr), and 
Sungho Kang (corresponding author, email: shkang@yonsei.ac.kr) are with the Department of 
Electrical and Electronic Engineering, Yonsei University, Seoul, Rep. of Korea 

doi:10.4218/etrij.10.0210.0097 

fail count comparison (SFCC) [5] uses a pruned search-tree 
algorithm for its optimal repair efficiency and low storage 
requirements. When there are few redundant memories, the 
area-overhead of CRESTA and the required RA time of SFCC 
are tolerable. However, when the memory redundancy 
increases, both of their costs rapidly increase. The heuristic 
method is a good way to avoid serious cost problems, but the 
repair efficiency of the existing heuristic RA algorithms is not 
sufficient. This letter presents a BIRA algorithm with a near-
optimal repair efficiency and low area and time costs. The 
proposed RA algorithm is an improved heuristic based on RM. 
It can achieve a near-optimal solution in just one step without 
any search tree or parallel hardware. In addition, high repair 
efficiency and low area overhead can be achieved. The 
experimental results illustrate more than 99% repair efficiency 
with less than half of the area overhead and analysis time of the 
LRM. 

II. Proposed RA Algorithm 

RM is an instinctive heuristic RA algorithm which has high 
repair efficiency but cannot guarantee an optimal solution for RA. 
In the RM process, it decides a max fault line for repairing first. 
When a row line and a column line have the same number of 
faults, it cannot determine the priority of the row or column first. 
A defective memory example is shown in Fig. 1. A row-first RM 
can repair all faults. However, a column-first RM repairs c2 with 
sc2, and the remaining faults cannot be repaired by the remaining 
redundant memories. This means that the repair efficiency of 
RM changes with the row- or column-first repair policy. 

This letter uses the cross-point fault character for solving this 
priority problem. The cross-point fault is defined as a fault in 
the point that a row fault line and a column fault line are 
crossed. In Fig. 1, the faults (3, 2) and (4, 2) are the cross-points. 

High Repair Efficiency BIRA Algorithm with a  
Line  Fault Scheme 

 Taewoo Han, Woosik Jeong, Youngkyu Park, and Sungho Kang  



ETRI Journal, Volume 32, Number 4, August 2010 Taewoo Han et al.   643 

 

 

 

 

 

Fig. 1. Example of a memory block with faults. 

 

 

c0 c1 c2 c3 c4 c5 

r0       

r1       

r2       

r3      

r4      

r5       

   

sr1 sr2 sc1 sc2
Fault 

detecting 
order 

Row
addr

Col
addr

0 0
1 0
2 0
3 1
3 2
4 2
4 4
5 5

 
 

 

Fig. 2. Pseudo-code of CRM algorithm. 

CRM(){ 
CRM_FC(){ 
MUST_CHECK(); 
if(no_must){ 
FAULT_BUFFER_WRITE(); 
for all fault buffer{ 
if(row address same){ 
row_flag = 1; 
LOCAL_ROW_TAG_WRITE();} 

if(column address same){ 
col_flag = 1; 
LOCAL_COL_TAG_WRITE();}}} } 

 
CRM_RA(){ 

for all fault buffer{ 
if(row_flag&column_flag is 1) 
CROSS_POINT_CHECK();} 

for all fault lines repair{ 
FIND_MAX(); 
if(count–cross max > 0) 
REPAIR_LINE(count–cross max );

else if(count max > 0) 
REPAIR_LINE(count max);} 

REPAIR_POINT();               }
} 

 
 
These points can be repaired by either spare row memory or 
spare column memory. Therefore, we excluded the cross-point 
from the fault line counting process, which sets the priority of 
the repair order in RM. After this process, the number of faults 
in the r3 is 1, c2 is 0, and r4 is 1. The proposed algorithm can 
repair all faults by substituting r1 and r2 with two redundant 
row memories. In this letter, this proposed algorithm is called 
the cross RM (CRM). 

Figure 2 shows the pseudo-code of the CRM. A BIRA 
collects the fault information from the test logic in a dynamic 
RA mode, and after the memory test process terminates, it 
analyzes the redundancy within a static RA mode. CRM_FC() 
represents the fault collection process of CRM in dynamic 
mode, and CRM_RA() represents the redundancy analysis 
process of CRM in static mode.  

Figure 3 is the new hardware architecture for efficiently 
executing this algorithm. The proposed hardware architecture 
is implemented with a fault buffer for collecting faults and local 
tag registers for storing line fault information. The depth of the 
fault buffer is 2×Rs×Cs, local row tag is Rs+Rs×(Cs/2), and the 
local column tag is Cs+Cs×(Rs/2). If any three storage areas 
overflow due to numerous faults, then it is considered an 
unrepairable case. Therefore, these storage limits automatically 
offer early termination conditions and reduce the CRM 

 

Fig. 3. Hardware architecture of CRM algorithm. 

  

Fault buffer
EN RE RF RADDR CF CADDR 

0 1 01 0 0 1 0 

1 1 01 0 1 1 0 

2 1 10 1 3 0 1 

3 1 10 1 3 1 2 

4 1 10 1 4 1 2 

5 1 10 1 4 0 3 

6 1 01 0 5 0 5 

Local row tag 
EN RADDR COUNT CROSS

0 1 3 2 1 

1 1 4 2 1 

Local column tag 
EN CADDR COUNT CROSS

0 0 0 2 0 

1 1 2 2 2 

EN (1bit): enable bit 
RE (2bit): repair solution 
RF (1bit): row line flag 
CF (1bit): column line flag 
RADDR: row fault address 
CADDR: column fault address 
COUNT: No. of line faults 
CROSS: No. of cross faults 
 
ACRM = (5+log2M+log2N)×(2RsCs) 
 + (1+log2M+log2Cs)×(Rs+Rs(Cs/2)) 
 + (1+log2N +log2Rs)×(Cs+Cs(Rs/2)) 
 
M: No. of rows of a memory 
N: No. of columns of a memory 
Rs: No. of rows of a spare memory 
Cs: No. of columns of a spare memory 

 
 
analysis time.  

Figure 3 also shows the result of the CRM in the example of 
Fig. 1. When the fault (0, 0) is detected, it is stored in fault 
buffer0 at FAULT_BUFFER_WRITE. When the fault (1, 0) is 
detected, it is stored in fault buffer1. The column address is the 
same as the fault buffer CADDR0, so the fault buffers CF0 and 
CF1 are set to 1, and the c0 is stored to the local column tag and 
COUNT0 is set to 2 at LOCAL_COL_TAG_WRITE. When 
the fault (2, 0) is detected, the column address is the same as 
the fault buffer0, but the local column tag COUNT0 is already 
the same as Rs. It is in the MUST condition, and c0 is repaired 
by the spare column memory. The local column tag EN0 is 
reset, and the fault buffers RE0 and RE1 are set to 01 at 
MUST_CHECK. After all faults are detected, if the fault buffer 
REi is 00 and both the RFi and CFi are 1, the i-th fault in the 
fault buffer is a cross-point fault, and local row tag CROSSi and 
local column tag CROSSi are increased by 1 at 
CROSS_POINT_CHECK. Also, the max COUNTi–CROSSi 
value is found in the local tags at FIND_MAX. The local row 
tag0 has the maximum COUNTi–CROSSi value, so r3 is 
repaired by the spare row memory at REPAIR_LINE. The 
local row tag EN0 is reset, and the fault buffer RE2, RE3 is set to 
10. After all line faults in the local tags are repaired, the point 
fault (5, 5) in the fault buffer is repaired by the remaining spare 
column memory at REPAIR_POINT.   

III. Experimental Results 

Many previous papers scattered faults randomly, so most 
faults are positioned as point faults, and most of the repair 
efficiencies of the heuristic algorithms are shown to be high. In 
this letter, a Gaussian distribution is used for generating various 
memory fault cases. The simulations are repeated for 100,000  



644   Taewoo Han et al. ETRI Journal, Volume 32, Number 4, August 2010 

 

Fig. 4. Repair efficiency (M=1024, N=64, Rs=4, Cs=6). 

80 
82 
84 
86 
88 
90 
92 
94 
96 
98 

100 
102 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Faults

R
ep

ai
r e

ffi
ci

en
cy

 

CRESTA 
SFCC 
LRM_20 
CRM_20 
LRM_15 
CRM_15 
LRM_10 
CRM_10 

 
 

 

Fig. 5. Area overhead (M=1024, N=64, 4<Rs<16, Cs=4). 

0

2,000 

4,000 

6,000 

8,000 

10,000 

12,000 

4 5 6 7 8 9 10 11 12 13 14 15 16

Rs 

A
re

a 

CRESTA 
SFCC 
LRM 
CRM 

 
 

 

Fig. 6. Clock cycles (M=1024, N=64, Rs=4, Cs=6). 

0 
100 
200 
300 
400 
500 
600 
700 
800 

10 11 12 13 14 15 16 17 18 19 20
Faults 

C
lo

ck
 c

yc
le

s 

CRESTA 
SFCC 
LRM 
CRM 

 
 
cases, and the same target memories, as described in [2], [5], 
are used. In Fig. 4, the repair efficiency indicates the number of 
repaired memories divided by the number of repairable 
memories. In CRM_15, the 15 refers to the variance in the 
Gaussian distribution. When the faults are generated massively 
from 15 to 10, LRM repair efficiency decreases to 88%, but 
CRM has a repair efficiency of more than 99%. In Fig. 5, the 
area overhead is estimated to be the required storage for an 
element as shown in previous papers [2], [5]. The area 
overhead of CRM is much lower than LRM and increases 
similarly in comparison to the SFCC. Figure 6 shows the clock 
cycles for estimating RA times in the static RA process. The 
clock cycles of heuristic algorithms are increased gradually, but 
SFCC increases rapidly due to the back-trace within the search-
tree processes. Therefore, it is able to confirm that the analysis 
speed of CRM is much faster than SFCC for many faults and 
complex cases. CRESTA has optimal repair efficiency with no 

additional analysis time during the static RA process, but the 
area overhead increases sharply with highly redundant 
memories. SFCC guarantees optimal repair efficiency and the 
lowest area overhead, but the RA time grows rapidly in the 
case of many faults. Within the heuristic algorithm cases, these 
have no critical costs, and CRM has lower costs and overhead 
than LRM. This is because the area overhead and the RA time 
are part of the 2D local bitmap in LRM, but CRM has only 
local tag registers and no bitmap. CRM needs additional RA 
time for collecting cross-point information during the static RA 
process, but its overall RA time is lower in comparison to the 
LRMs for the case of small storage sizes with aggressive line 
fault information usage. 

IV. Conclusion 

A new RA algorithm, CRM with specialized hardware 
architecture is proposed in this letter. CRM can achieve higher 
repair efficiency than RM due to excluding cross-points in the 
counting process. It shows near-optimal repair efficiency in a 
one-step process with a low area overhead and a short RA time. 
The performance of the new RA algorithm is better than the 
performance of LRM due to its use of line tag information. In 
comparison with optimal repair efficiency BIRA algorithms 
(CRESTA, SFCC), the new algorithm has a similar repair 
efficiency with no serious hardware cost or time cost for those 
complex cases that have many redundancies or faults. We 
showed a design for BIRA hardware at a minimum size to be 
built into embedded memories in SoCs or commodity 
memories. The existing RM algorithms may be substituted by 
the proposed heuristic algorithm to achieve higher repair 
efficiency, a lower area cost, and a faster analysis speed. 

References 

[1] S.Y. Kuo and W. Kent Fuchs, “Efficient Spare Allocation for 
Reconfigurable Arrays,” IEEE Des. Test, vol. 4, no. 1, 1987, pp. 
24-31. 

[2] C.H. Huang et al., “Built-In Redundancy Analysis for Memory 
Yield Improvement,” IEEE Trans. Reliab., vol. 52, no. 4, Dec. 
2003, pp. 386-399. 

[3] M. Yang et al., “A Novel BIRA Method with High Repair 
Efficiency and Small Hardware Overhead,” ETRI J., vol. 31, no. 3, 
June 2009, pp. 339-341. 

[4] T. Kawagoe et al., “A Built-In Self-Repair Analyzer (CRESTA) for 
Embedded DRAMs,” Proc. Int. Test Conf., Oct. 2000, pp. 567-574. 

[5] W. Jeong et al., “A Fast Built-in Redundancy Analysis for 
Memories with Optimal Repair Rate Using a Line-Based Search 
Tree,” IEEE Trans. Very Large Scale Integration, vol. 17, no. 12, 
Dec. 2009, pp. 1665-1678. 


