
348   Daeseon Choi et al. © 2010               ETRI Journal, Volume 32, Number 2, April 2010 

This letter presents an enhancement of EigenTrust. Using the 
beta distribution, local trust values can be more correctly 
evaluated. Simulation shows that the proposed scheme 
calculates the local trust more correctly by up to 8%. For 
personalization, the proposed scheme provides cumulative 
transitive values from the local trust to the global trust with 
mathematically guaranteed convergence. 

Keywords: Trust management, peer-to-peer network, social 
network, security, trust evaluation. 

I. Introduction 
With the advance of the Internet and high-speed 

wired/wireless networks, people are able to interact online 
much more frequently and easily than offline. It is possible to 
visit strangers’ blogs, chat with others, and carry out important 
transactions with unfamiliar people over the Internet. 

One of the most crucial prerequisites is trust establishment 
for these online transactions or services. If we can correctly 
evaluate another person’s trustworthiness online, we can avoid 
the diverse and numerous frauds and dangers, such as 
downloading malicious programs, purchasing defective 
products, having inappropriate interactions, and so on. 

For several years, there has been much focus on decentralized 
trust management, and many trust management schemes have 
been devised. However, most rely on heuristics, and only a few 
schemes are based on concrete theories. EigenTrust [1] is one of 
them, and it is one of the most widely used up to now. 
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EigenTrust is a distributed protocol to compute the 
converged global trust values of peers by applying each peer’s 
local trust value transitively. Unlike other models, EigenTrust 
relies on linear algebraic theory to guarantee obtaining the 
converged global trust values. Moreover, it is very simple and 
does not depend on complex parameters or assumptions. 

Recently, personalized schemes have appeared in which 
each peer organizes an initial trust group and gradually extends 
the group and updates trust information [2]-[6] to provide 
personalized trust information in distributed environments. 
However, such schemes seem infeasible since the underlying 
relation graph cannot be used for general cases or [2], [3] have 
an exponential order of time complexity [7]. 

We propose an enhancement of EigenTrust. Using the beta 
distribution, the enhanced scheme can calculate the local trust 
value more correctly. We also provide the cumulative transitive 
values from local trust to the global trust, where each peer can 
calculate the combined values of his/her local trust with global 
ones. We mathematically prove that the combined trust values 
with α=1 converge to those of EigenTrust. Simulation results 
show that the enhance scheme can calculate local trust values 
more correctly than Eigentrust. 

II. Enhanced EigenTrust 

1. Overview of EigenTrust 

EigenTrust is a distributed algorithm for each peer to compute 
other peers’ global trust values in P2P environments. To do this, 
each peer first calculates local trust values of others as follows. 

Assume that each peer i has already had transactions with 
another j, and sij is initialized to 0. For each transaction between 
i and j, sij is incremented by 1 if i is satisfied with the 
transaction with j (otherwise, decremented by 1). By using sij, i 
can compute the direct trust value of j as 

  max( ,0) max( ,0)ij ij ijj
c s s= ∑ ,         (1)  
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where cij represents j’s direct trust value from the point of view 
of i. We call cij the local trust value hereafter. Note that 0≤cij≤1. 
A one-hop indirect trust value of another peer k from i’s point 
of view, (tik) can be calculated as .ik j ij ikt c c= Σ  If we define C 
to be a matrix [cij], lt  is a vector containing tik for all k, and lc  
is a vector containing cik for all k, then, l lt c= C. If we 
consider two-hop indirect trust values, that is, recommendees’ 
recommendations, l lt c= C2. Similarly, for n-hop indirect 
recommendations from the initial direct trust, l lt c= Cn. 
Because C is aperiodic and irreducible, as n goes towards 
infinity, for all i, lt  is converged to a single vector, C’s 
eigenvector. EigenTrust regards this eigenvector as global trust 
values for all peers. The distributed EigenTrust algorithm has 
score managers, where, for each peer i, different M score 
managers are related, and they calculate the global trust value 
for i. To assign score managers, a distributed hash table (DHT) 
such as CAN or Chord is used (see [1]). 

2. Enhancement Using Beta Distributions 

Recall (1) to calculate cij, where sij means the number of 
satisfactory transactions subtracted by the number of 
unsatisfactory transactions. Assume that there are two disjoint 
events, x and ~x. We define r and s to be the numbers of 
occurrences of x and ~x up to now, respectively. If we define α 
and β as α=r+1 and β=s+1, the probability density function f 
for event x is 

1 1( )( , ) (1 ) .
( ) ( )

f p p pα βα βα β
α β

− −Γ +
= −

Γ + Γ
 

The expected value for f is (r+1)/(r+s+2). In 2002, Jøsang 
and others devised the Beta reputation system [8] using this 
distribution. However, [8] does not consider the convergence 
of transitive trust, which makes it difficult to measure the 
global trust of peers. 

Assume that rij and sij are the numbers of past satisfactory 
and unsatisfactory transactions from i to j, respectively. If we 
use f to calculate local trust value, cij= (rij+1)/(rij+sij+2), which 
means the probability that peer i can expect a satisfactory result 
for the next transaction with j. 

However, we should use normalization for the local trust 
value for convergence in EigenTrust. Hence, we calculate the 
local trust value as 

  
1 1

2 2
ij ij

ij
ij ij ij ij

r r
c j

r s r s
⎛ ⎞ ⎛ ⎞+ +

= Σ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠
.        (2)  

3. Personalized EigenTrust 

If all the peers perform transactions with others evenly, 

EigenTrust works very well. However, in practice, there are 
some closed community groups, such as university students, 
that EigenTrust’s global trust values do not reflect their 
trustworthiness very well [9]. 

Some recent schemes [2]-[6] provide personalized trust 
information, where each peer has an initial trust group and then 
gradually extends the group and updates the trust information. 
However, these methods have some limitations or high 
computational complexities [7]. 

In this section, we provide personalized EigenTrust to 
calculate the combined value of each peer’s local trust and 
global trust. If we provide personalization, peers in a closed 
community group can calculate each other’s trustworthiness 
more accurately (even though others may underestimate those 
peers’ trust values). 

One naive method adds another variable α (0≤α≤1) for 
combination: α・(local trust value) + (1−α)・(global trust value), 
where a similar method is described in [1]. This naive method 
provides a simple combined value of local and global trust 
because the convergence speed of EigenTrust is very fast [1]. 

To reflect the recent personalization approach in which each 
peer has an initial trust group and then gradually extends the 
group and updates the trust information, we assign different 
weights for different numbers of transitive relations. More 
specifically, we assign the highest weight to the direct trust and 
the second highest to the one-hop-indirect trust. In this way, as 
the number of transitive operations increases, we decrease the 
weight for trust calculation as follows: 

 2
1( ) / ( ) / .t t k

t kT IC C C t C t== + + + = Σ       (3) 

In the matrix Tt, the i-th vector is peer i’s personalized trust 
vector .lt  By using (3), we consider two improvements over 
the original algorithm. First, we assign a lower weight as more 
transitive operations are applied as in [2], [3], and [7] where the 
number of transitive operations is limited. Second, we slow 
down the convergence speed to weigh personal direct trust 
more heavily and to reflect the change of trust relations (from 
personal direct trust) conservatively. 

Theorem 1 demonstrates that if t goes to infinity, Tt finally 
converges to the original EigenTrust. 

Theorem 1. Assume that lim .t
t C C∞
→∞ = Then, 

1lim ( ) / .t k
t t kT C C t∞
→∞ == Σ  

Proof. Without loss of generality, let ( )k
ijc be the entry of Ck 

in the i-th row and j-th column. Then, ( )lim t
t ij ijC C∞
→∞ = since 

all of the entries in C∞ are converged to fixed values. 
Therefore, we just need to prove the entry ( ) ,t

ijd  which is in the 
i-th row and j-th column of Tt, converges to ( )

ijc ∞ in order to 
prove the theorem. By the definition of limit, there exists a natural 
number k1 s. t. for any 2 0,ε >  ( ) ( )

1 2.t
ij ijt k c c ε∞≥ ⇒ − <  
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Let M be the maximum value among 1( )( ) ( ) ( ), , .kt
ij ij ij ijc c c c∞ ∞− −  

Then, ( ) ( )
1 1 1( 1) 2 2.t

ij ijd c k M t t k t k M tε ε∞− ≤ + − + ⋅ ≤ +  

Since 1lim 0,
t

k M t
→∞

=  there exists a natural number k2 s. t. for 

any 2 1/ 2 0, / 2.t k k M tε ε< ≥ ⇒ < Thus, for any 0,ε >  
( ) ( )

1 2max( , ) .t t
ij ijt k k d c ε> ⇒ − < Therefore, ( ) ( )lim .t

t ij ijd C ∞
→∞ =  

              � 
If we modify (3) as follows, we can achieve personalized 

trust values more flexibly by adjusting α: 
0 1 2 1 0 1 1( ) /( ).t t t

tT IC C Cα α α α α α− −′= + + + + + +  (4) 

In (4), when α =1, Tt' = Tt of (3). If α = 0, Tt' = IC = C, that is, 
local trust values. 0<α<1, Tt' contains combined values 
between local trust and global trust.  

III. Experimental Results 

To evaluate the enhanced scheme we conducted two 
experiments. In the first experiment, we focused on calculation 
of local trust values. We assumed that there were 3 peers A, B, 
and C, where A and B perform transactions with C, and C 
computes the local trust values of A and B using EigenTrust 
and the enhanced scheme, respectively. We considered every 
possible case where each peer has provided satisfactory/ 
unsatisfactory transactions. Experiments show that, for some 
cases, relative values of the original local trust show 
inconsistent inequality relationships, that is, the local trust 
values of EigenTrust are cCA>cCB, whereas those of the 
enhanced scheme are cCA<cCB. Because the enhanced scheme 
is based on the beta distribution that reflects relative local trust-
worthiness correctly, this difference indicates the case where 
the original algorithm computes incorrect local trust relations. 
Figure 1 shows the simulation results. The x and y axes are the 
numbers of transactions of A and B, respectively, and the z axis  

 

 

Fig. 1. Comparison of local trust values of EigenTrust and those
of the enhanced scheme. 
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is the probability of such an inconsistent occurrence. Figure 
1shows that such an inconsistency occurs with a probability of 
up to 8.7%.  

In the next experiment, we compared the convergence rates 
between EigenTrust and the enhanced scheme. We set the 
number of peers is 50 and defined a round as each case in 
which a peer performs a transaction and exchanges local trust 
information with others evenly. Experimental results show that 
EigenTrust has fast convergence within 5 rounds, while our 
personalized EigenTrust has slower convergence (from 
personal local trust to global trust), taking 15 to 20 rounds, 
which reflects our conservative approach. We also conducted 
experiments for various α values, which confirmed that for the 
case of 0<α<1, the computed trust values have intermediate 
results between global and local trust values. 

IV. Conclusion 

In this letter, we presented an enhancement of EigenTrust by 
using the beta distribution. Simulation results showed that the 
enhanced scheme can correct inaccurate cases, which are 2% 
to 8% on average. Moreover, experimental results show that 
the proposed algorithm produces personalized trust values by 
adjusting α. 
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