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Radio frequency (RF) subsampling can be used by radio 
receivers to directly down-convert and digitize RF signals. 
A goal of a cognitive radio/software defined ratio 
(CR/SDR) receiver design is to place the analog-to-digital 
converter (ADC) as near the antenna as possible. Based on 
this, a band-pass sampling (BPS) frontend for CR/SDR is 
proposed and verified. We present a receiver architecture 
based second-order BPS and signal processing techniques 
for a digital RF frontend. This paper is focused on the 
benefits of the second-order BPS architecture in spectrum 
sensing over a wide frequency band range and in    
multiband receiving without modification of the RF 
hardware. Methods to manipulate the spectra are 
described, and reconstruction filter designs are provided. 
On the basis of this concept, second-order BPS frontends 
for CR/SDR systems are designed and verified using a 
hardware platform. 
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I. Introduction 

Cognitive radio (CR) technology can theoretically 
interoperate among incompatible communication systems. In 
other words, cognitive radio is a radio function that is capable 
of switching from a crowded part of the radio frequency 
spectrum to a radio frequency region that is more sparsely 
populated but can still receive the original signals of interest 
[1]-[2]. Also, software defined radio (SDR) is programmable 
radio whose functions are extensively defined in software and 
thus can support multistandard or multiband radio 
communications [3]. As a requirement for CR/SDR, a 
wideband analog frontend (FE) and analog-to-digital converter 
(ADC) are necessary to allow signals from different systems to 
be processed [4].  

In radio receivers, complete implementation of the CR/SDR 
concept is mainly limited by the frontend. Building flexible 
frontends in classic ways is challenging because of the narrow 
bandwidth of intermediate frequency (IF) filters and the 
frequency range of synthesizers [5], [6]. The key to CR/SDR is 
the placement and design technique of the ADC in the channel 
processing stream, and the goal is to put the ADC as close as 
possible to the antenna [7].  

RF band-pass sampling (BPS) is a solution for CR/SDR 
which provides a frontend with maximum flexibility [8]. The 
sampling frequency requirement is no longer based on the 
frequency of the RF carrier but rather on the information 
bandwidth of the signal. This makes it possible to have an 
interface between the RF stage and the ADC in a radio receiver 
frontend. The process of BPS samples a signal at the RF stage 
and shifts to a near baseband stage through intentional aliasing. 
This technique can be used immediately on a modulated band-
pass signal with the sampling rate of only twice the information 
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bandwidth, which is much less than the Nyquist rate. Therefore, 
the BPS technique provides an interface between the RF stage 
and ADC, and also gives a wide choice of sampling rates for a 
multimode or multiband radio design [9], [10]. Another 
advantage of BPS is that the proper choice of sampling 
frequency enables simultaneous down-conversion of 
multiband signals.  

In this paper, we present a second-order BPS method to 
design an FE that can realize universal access or spectrum 
scanning in a wide frequency band range and the 
implementation of a hardware platform to verify its 
performance. This second-order BPS receiver can also be 
utilized as an FE for simultaneous multiband access to a wide 
range of frequencies with only a reconfiguration. In section II, a 
method for universal access to arbitrary bands using the 
second-order BPS method is described. Section III describes a 
second-order BPS receiver and signal processing technique for 
multiband access. Section IV describes the implementation and 
performance test results of the hardware platform. Finally, we 
provide a conclusion in section V. 

II. Second-Order BPS Method and Universal Access 

1. Second-Order BPS 

Denoting the RF filter’s bandwidth as B, an RF band-pass 
signal R(f) is sampled by using a sampling rate of fs=2B. Any 
signal in the frequency zone of index n is expressed by 

s s( 1/ 2) ( 1/ 2)n f f n f− < < +           (1) 

and is aliased into the first Nyquist zone .f B<   
In a second-order BPS receiver, two ADCs (referred to as 

ADC A and ADC B) produce streams A and B, respectively. 
The second ADC (ADC B) operates with delay TΔ  during the 
sampling time; hence, it introduces a relative phase difference 
between the two ADC sample streams, A and B. Let us define 
the spectra of sample data in streams A and B as RA(f) and RB(f), 
respectively. These two spectra satisfy the following expression 
as presented in [9]: 

s2
B A A( ) ( ) ( ) ,j T f nR f R f e R fπδ δ δ βΔ−= ⋅ = ⋅        (2) 

where n denotes the index of the frequency band position in (1), 
and s2j T fe πβ Δ−= .  

In Fig. 1, we depict some examples of RF signals in the 
same frequency zone that will be repositioned within |f|< B 
with the same phase shift in stream B when we select the 
sample rate as fs=2B. The positive frequency spectrum of R(f) 
is defined as R+(f), and the negative frequency spectrum is R–(f). 
The spectra of streams A and B are denoted by A ( )R fδ  
and B ( ),R fδ  respectively. The images from both sides interfere  

 

Fig. 1. RF signals and their subsampled spectra in stream B. 
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Fig. 2. Non-integer positioned RF signal and subsampled signal 
spectrum. 
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with each other. Note that all these cases have the same relative 
phase between streams A and B because the zone index is 
same. This implies that the same interpolant filter is used to 
remove self images. 

This BPS method is not restricted to an integer-positioned 
RF signal. Thus, a signal spectrum may occupy two 
consecutive frequency zones as depicted in Fig. 2. As shown in 
Fig. 2(b), two segments of the RF spectrum are repositioned in 
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the positive and negative side of the Nyquist zone, but they 
have different phase shifts. Due to the phase difference 
between the two images, and therefore, by proper design of the 
interpolant filters of the two streams that manipulate spectra in  
|f|<B, either R+(f) or R–(f) can be reconstructed without 
interference. 

2. Reconstruction Filters 

Spectrum sensing used to identify unused segments is a key 
requirement of CR. The universal access BPS architecture 
described in this section provides an effective method to scan a 
wide range of frequencies. 

• The sampling rate is fixed at fs=2B. 
• It has a tunable RF filter with bandwidth B. 
• The spectrum can be down-converted and is identifiable as 

being integer positioned or not.  

Two different types of reconstruction filters are required for 
the signals positioned within a single zone and across two 
zones. We present the frequency response of the reconstruction 
filter in the next subsections.  

A. Reconstruction Filter for an RF Signal Occupying One 
Frequency Zone  

To eliminate overlapped images, reconstruction filter SA(f) 
and SB(f) are applied to streams A and B, respectively. The 
spectrum of the recovered signal is expressed by 

A A B B( ) ( ) ( ) ( ) ( ).R f S f R f S f R fδ δ δ= ⋅ + ⋅       (3) 

By separating the positive frequency region from the 
negative frequency region of the spectrum, (3) becomes 

A +A -A B +B -B( ) ( ) [ ( ) ( )] ( ) [ ( ) ( )].R f S f R f R f S f R f R fδ δ δ δ δ= ⋅ + + ⋅ +  

(4) 
Here, R+(f) is reconstructed by eliminating R–(f), if SA(f) and 
SB(f) satisfy 

A +A B B A 1

A A B B

[ ( ) ( )] ( 2 ),

[ ( ) ( )] 0,

B S R f S R f CR f n B

B S R f S R f

δ δ

δ δ

+ +

− −

⋅ ⋅ + ⋅ = −

⋅ ⋅ + ⋅ =
    (5) 

where C is an arbitrary complex constant. 
For convenience, we select SA(f) in its simplest form as 

A
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Fig. 3. Reconstruction filters and recovered signal spectrum. 
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By substituting (6) into (5), SB(f) is obtained by 
1
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Here, SA(f) is a simple real value gain, but SB(f) is a complex 
filter as shown in Fig. 3(a). As the maximum bandwidth of 
SA(f) and SB(f) is B, and because a sampling rate of fs=2B is 
used, digital filters are implemented by sampling the inverse 
transforms given by (6b) and (7b). The reconstructed complex 
signal is depicted in Fig. 3(b). 

B. Reconstruction Filter for an RF Signal Occupying Two 
Consecutive Frequency Zones  

For reconstruction of complex signal R+(f) in Fig. 2, (5) is 
used again to derive SA(f) and SB(f). If SA(f) is selected as (6), 
SB(f) is given by 

1

1

( 1)

B

/ , 0,
( )

/ , 0 ,

n

n

B B f
S f

B f B
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The reconstruction filter and resulting spectrum of 
reconstructed samples are depicted in Figs. 4(a) and 4(b), 
respectively. In most cases, a complex frequency shift is 
required to align the signal spectrum between 0 and B. 
 

 

Fig. 4. Reconstruction filters and recovered signal spectrum. 
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Fig. 5. Spectrum of stream B when two bands are down-converted 
simultaneously. 
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III. Frontend Architecture for Multiband Receiver 

A simultaneous down-conversion function of more than two 
signals is required in CR systems. We introduce a second-order 
BPS technique that realizes multiband receiving and 
environment sensing. By proper design of the interpolant and 
taking full advantage of digital filters, multiband signals may 
be received simultaneously and separated. 

1. Second-Order BPS FE for Two-Band Signals 

In subsection 2, we described a second-order BPS method to 
monitor or receive signals in a fixed bandwidth of B at each 
scanning trial. The same architecture allows the environment to 
be sensed by scanning the broadband range of spectrum while 
receiving a fixed spectrum for a normal channel. To do this we 
set the following preconditions: 

• Two tunable RF filters with bandwidth B are used. 
• The ADCs operate at a sampling-rate of fs=2B. 
• The frequency region is divided into segments of 

bandwidth B.  
• The pass-band of tunable RF filters is forced to be aligned 

with the segment boundary.  

The third and fourth conditions ensure that the reconstruction 
filters always separate two bands without interference. If the 
condition is not met, the amount of mutual interference 
depends on the band positions.  

First, a channel for normal receiving is selected in one of the 
frequency segments, and the second RF filter then scans other 
segments dynamically. The frequency response of stream B, in 
which two bands are down-converted simultaneously by 
second-order BPS, is depicted in Fig. 5. It is assumed that R0(f) 
and R1(f) are two RF signals in the frequency zones n0 and n1, 
respectively. 

2. Image Rejection Filter Design 

Two signals are separated by designing proper digital filters. 
The environment sensing receiver can utilize this feature  

Diwl  

Fig. 6. BPS receiver architecture for environment sensing. 
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provided by the same second-order BPS frontend described in 
section II. The BPS receiver architecture for environment 
sensing is proposed and shown in Fig. 6. 

The three interpolants in Fig. 6 are reconfigurable FIR filters 
which are designed to remove mutual images as shown in  
Fig. 5. For example, interpolants SA(f) and 0

B ( )S f  are 
designed to recover R0(f) while R1(f) is suppressed. Therefore, 
interpolants SA(f) and 0

B ( )S f  should satisfy the following in 
f B≤ : 

, 0 0 , 0 0
A +A B +B +A 0
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[ ( ) ( )] ( 2 ),
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δ δ

δ δ

⋅ ⋅ + ⋅ = −

⋅ ⋅ + ⋅ = +
  (9a) 

and  
, 1 0 , 1

A +A B +B
, 1 0 , 1

A -A B -B

[ ( ) ( )] 0,

[ ( ) ( )] 0,

B S R f S R f

B S R f S R f

δ δ

δ δ

⋅ ⋅ + ⋅ =

⋅ ⋅ + ⋅ =
       (9b) 

where , 0 ( )R fδ and , 1( )R fδ stand for the spectra of 
subsampled signals of RF signals R0(f) and R1(f), respectively.  

Again for simplicity, SA(f) is selected as in (6). Thus, 0
B ( )S f  

is derived by solving (9a) and (9b) simultaneously: 

1
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0
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, 0,
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, 0 .

n

n
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⎧ −
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         (10) 

To reconstruct R1(f) simultaneously, another interpolant 
1
B ( )S f is designed in the same manner as that in (9a) and (9b):   

0

0

1
B

, 0,
( )

, 0 ,

n

n

β B f
BS f
β f B
B

−⎧−
− < <⎪⎪= ⎨

−⎪ < <⎪⎩

         (11) 

As the frequency segments are divided by bandwidth B, two 
selected signals could be included in the same frequency zone. 
There are no overlapped images having the same phase shift, 
but two signals are extracted simultaneously in any case by a  
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Fig. 7. Relative signal strength of recovered signal. 
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proper design of 0

B ( )S f .  
The envelope of the recovered signal is expressed by (12).  

From (12), it is expected that the recovered level of the desired 
signal varies periodically as a function of S 1 0T f n nΔ ± . 
Figure 7 shows the relative signal strength of a recovered signal 
in a decibel scale.  

Given 1 0n n± , to avoid possible SNR degradation, the 
proper choice of sT fΔ  is essential.  

{ }S

1 0

1 2 1 cos[2 ] ,

.

ndC T f nd

nd n n

β π±
Δ= − = ⋅ −

= ±
   (12) 

Although the level of the desired signal is increased by 
optimizing TΔ , it can cause the side effect of a large group 
delay if TΔ  is too large. There are two solutions to 
compensate for this group delay effect [11]. First, an 
interpolator following the stream B interpolant can be 
resampled to align two streams in the time domain. Another 
method is to modify the frequency response of the stream B 
interpolant by subtracting the group delay effect of 02 T fπ Δ . A 
modified response of the stream B interpolant is expressed by  

02
B( ) B( ) ( ) j T f

comS f S f e π Δ= ⋅ .             (13) 

3. Second-Order BPS FE for Three-Band Signals 

We introduce a method to receive more than two-band RF 
signals simultaneously and separate each of them under the 
precondition that three band-pass RF signals lie in the n0, n1, 
and n2 frequency zones. The spectra in the positive axis are 
shown in Fig. 8. The spectra of the three signals are defined as 
R0(f), R1(f), and R2(f). Signals aliased from each zone have 
different phase shifts in stream B as shown in Fig. 8. As 
discussed in section II, [ ]s0, 2f  contains all the signals we  

 

Fig. 8. Spectrum and relative phase of three-band RF signals. 
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Fig. 9. Three-band signals after BPS within [0,fs/2]. 
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want to receive. We defined the three signals in [ ]s0, 2f  as 
S0 , S1, and S2 as shown in Fig. 9. 

We define f1 as the middle of S0 and S1, that is 

1 0H 1L 0H( ) / 2,f f f f= + −           (14) 

where f0H  is the highest frequency of signal S0, and f1L is the 
lowest frequency of signal S1. 

As seen in Fig. 9, in [0, f1] only S0 and S2 are overlapped, and 
in [f1, fs/2] only S1 and S2 are overlapped. If we want to separate 
S0 and S1 from S2, we simply remove S2 by using the 
interpolants we designed in section III as 

A1

1/ , ,
( )

0, otherwise,

B f B
S f

⎧ <
⎪= ⎨
⎪
⎩

          (15) 

2

2
B1

/ , 0,
( ) / , 0 ,
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n

n

B B f
S f B f B

β

β

−⎧− − < <
⎪

= − < <⎨
⎪
⎩

     (16) 

Then, after filtering using interpolants SA1(f) and SB1(f) the 
outputs have only S0 and S1 remaining. As these two signals do 
not overlap each other, they can be separated using proper filters.  

A low-pass filter is defined as  

1
LP

1, [0, ],
0, others.

f
S ⎧

= ⎨
⎩

             (17) 

It is used to remove S1 from S0. A high-pass filter is defined as  

1 s
HP

1, [ , / 2],
0, others.

f f
S

⎧
= ⎨

⎩
            (18) 

It is used to remove S0 from S1. Then, after filtering using  
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Fig. 10. Architecture of three-band access second-order BPS 
receiver. 
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interpolants and two filters, S0 and S1 are separated. 

If we want to separate S2 from S0 and S1, we design 
interpolants to remove S0 from [0, f1] and to remove S1 from  
[f1, fs/2]. 

Thus, an interpolant is defined as 
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     (20) 

The architecture of the proposed three-band access BPS 
receiver is shown in Fig. 10. Three tunable RF filters select 
signals received simultaneously. The reconfigurable interpolants 
suppress overlapped signals. Low-pass and high-pass filters are 
used to separate signals in different frequencies. 

IV. Implementation of BPS FE and Performance Test 

We introduce the second-order BPS FE to verify the features 
described in sections II and III. We designed a receiver 
platform based on BPS FE to verify the performance of the 
band-pass sampling system proposed in section III. It is very 
hard to find commercial ADCs that operate at a moderate 
sampling rate with low power consumption and have a very 
wide analog bandwidth of up to 5 GHz. In our design, a 
conventional IF sampling purpose ADC is preceded by a 
gigahertz track and holder (T&H). Two wide-band T&H chips 
are proposed to subsample band-pass RF signals and perform 
frequency down-conversion to the baseband. The ADC chip is 
proposed to be used as a quantizer. The analog bandwidth of 
the T&H must be larger than the maximum frequency of the 
RF signal, whereas the quantizers operate at a rate of 2B (B is  

 

Fig. 11. Second-order BPS FE platform. 
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the bandwidth of the RF tunable filter). The clock generator 
block is responsible for distribution of a stable clock to the 
T&H, ADC, and FPGA, with an extremely low jitter, which 
also generates different time delay between two ADC paths,  
that is, ΔT . Figure 11 shows the second-order BPS FE 
platform that was implemented in this research. 

1. Performance Verification of Two-Band Signal 

We demonstrated two-band access features enabled by 
employing the proposed second-order BPS FE. In this test, RF 
signals were subsampled at a rate of 60 MHz and the largest 
delay of 2,250 ps was used. It was preconditioned that each 
channel could access four different bands respectively as 
shown in Fig 12. Also, we could choose one of 16 sets of 
interpolants according to the combination of band positions. 

We show one of the test results when a 4-QAM signal 
centered at 2.404 GHz (n0=40) and an AM signal centered at 
1.264 GHz (n1=21) were received simultaneously. Some  

 

 

Fig. 12. Example band positions. 
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Fig. 13. FFT of ADC output samples. 
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Fig. 14. FFT of separated signals: (a) 4-QAM from 2.404 GHz 
and (b) AM from 1.264 GHz. 
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Fig. 15. FFT of ADC output samples. 
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sample streams were captured from an FPGA to generate an 
FFT or scattered plot. Figure 13 shows the FFT of the output of 
the ADC in which two signals are overlapped. The two signals 
are separated by applying the interpolant described in (6), (10), 
and (11). The FFTs of the two separated signals are depicted in 
Fig. 14.  

2. Performance Verification of Three-Band Signal 

In this study, RF signals were subsampled at a rate of   
66.67 MHz, and a delay of 1,950 ps was used. We show one of 
the test results when a 4-QAM signal centered at 1.3393 GHz 
(n0=20), an AM signal centered at 1.0707 GHz (n1=16), and an  

 

Fig. 16. FFT of separated signals. 
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Fig. 17. FFT of separated AM signals. 
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AM signal centered at 1.608 GHz (n2=24) were received 
simultaneously. Figure 15 shows the FFT of the output of the 
ADC in which 4-QAM signals overlapped with two AM 
signals. By applying the interpolant described in (19) and (20), 
two AM signals from different frequencies were suppressed 
simultaneously as shown in Fig. 16(a). By applying the 
interpolant described in (15) and (16), 4-QAM signals were 
suppressed as shown in Fig. 16(b). Figure 17 shows the FFTs 
of the AM signals separated by low-pass and high-pass filters 
described in (17) and (18), respectively. 

V. Conclusion 

We proposed a frontend architecture based on second-order 
BPS particularly for CR and SDR systems which provides 
flexibility in accessibility to a wide range of frequency regions. 
This BPS receiver can access or scan any frequency band 
without limitation in frequency band position. It also down-
converts multiband signals simultaneously and separates 
signals by suppressing mutual interference using digital signal 
processing. This proposed BPS FE architecture also enables a 
CR system to perform environment sensing for unused 
frequency segments on the normal receiving operation. To 
verify and demonstrate the usefulness of the proposed BPS FE, 
a hardware platform was implemented and test results were 
presented. We expect that the BPS-FE-based receiver will 
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operate well in practical application.  
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