골판지의 골 성형이 식품포장용 골판지 상자의 압축강도에 미치는 영향

Effect of Corrugation Fluting on the Compressive Strength of Corrugated Fiberboard Box for Food Packaging

  • 김청 (동국대학교 식품공학과) ;
  • 허재영 (동국대학교 식품공학과) ;
  • 이광근 (동국대학교 식품공학과)
  • Kim, Cheong (Department of Food Science and Technology, Dongguk University) ;
  • Her, Jae-Young (Department of Food Science and Technology, Dongguk University) ;
  • Lee, Kwang-Geun (Department of Food Science and Technology, Dongguk University)
  • 투고 : 2009.08.12
  • 심사 : 2010.03.31
  • 발행 : 2010.05.30

초록

본 연구는 일정한 실험조건 하에서 골심지 시료에 따른 골 성형 실험을 행하여 골심지에 의한 하이로골의 발생과 골판지상자의 압축강도의 관계에 대하여 조사하였다. 골판지의 골 높이가 낮은 골(low corrugation)의 비율이 많은 골심지 그레이드는 장력 변동의 저항에도 약하며 골심지의 이탈력에 의한 강탈(stealing)이 일어나기 쉽고, 결과적으로 낮은 골 비율이 높아졌으며, 골심지 두께 편차가 큰 골심지는 골 성형 시에 슬립현상을 발생하기 쉽기 때문에 불규칙한 골을 연속 형성하는 경향이 있었다. 또한 골심지의 그레이드에 따른 하이로골 분포비율의 실험결과 일반적 경향으로는 그레이드가 높은 골심지 일수록 낮은 골비율이 적었다. 골 성형된 골판지 시트의 두께의 경우는 원지 평량과의 상관성은 적고 골심지 두께와 상관하며 y=3.9732x+4.2712, $R^{2}=0.8142$), 골심지의 밀도에 역상관한다((y=-3.1213x+6.8736, $R^{2}=0.9919$). 하이로골 중에서 낮은 골 분포를 크게 나타낸 골심지 재료의 골판지로 만든 골판지상자의 압축강도가 현저히 낮고 골심지 시료의 그레이드에 따라 13%의 차이가 있었으며 압축강도의 편차도 골심지의 시료에 따라 21%로 크며, 골심지 골은 원지의 두께 및 밀도 등 물리적 특성치의 변동과 관계한다.

In this study, we performed corrugation fluting experiments to examine the relationship between high-low corrugation of a corrugated medium and compressive strength of corrugated containers for food packaging. A low-grade corrugated medium was found to suffer from weak tensile resistance and to be prone to stealing, which tends to produce low corrugation. In contrast, a medium with a large corrugation deviation often caused slimming during fluting and produced irregular corrugations. Experiments of high-low corrugation distribution according to corrugated medium grades indicate that a high grade medium shows a smaller ratio of low corrugation. The thickness of corrugated fiberboard is weakly correlated to the basis weight of medium, yet positively correlated to the medium thickness (y=3.9732x+4.2712, $R^{2}=0.8142$) and inversely proportional to the medium density (y=-3.1213x+6.8736, $R^{2}=0.9919$). Compressive strength of a corrugated fiberboard box is low, if made of corrugated medium with large low corrugation distribution. Compressive strength showed 13% variation with respect to medium grades and 21% variation for various test samples. The corrugation fluting of a corrugated medium is related to physical properties such as basis thickness and density.

키워드

참고문헌

  1. Batelka JJ. 1994. The effect of boxplant operations on corrugated board edge crush test. Tappi J. 77: 193-198.
  2. Boonyasarn A, Harte BR, Twede D, Lee JL. 1992. The effect of cyclic environments on the compression strength of boxes made from high-performance (fiber-efficient) corrugated fiberboard. Tappi J. 75: 79-85.
  3. Bronkhorst CA. 1997. Towards a more mechanistic understanding of corrugated container creep deformation behavior. J. Pulp Paper Sci. 23: 174-175.
  4. Crisp CJ, Scott RA, Tomlinson JC. 1968. Resistance of corrugated to flat crushing loads. Tappi J. 51: 80-83.
  5. Ince PJ, Urbanik TJ. 1985. Economics of fiber cost and compressive strength of single-wall corrugated boxes. Tappi J. 69: 102-105.
  6. Jonson P, Huteberg A. 1976. Compression Strength. Paperboard Packaging 61: 52-65.
  7. Kim C. 2007. Corrugated fiberboard packaging. Korea Packaging Industries Ltd., Seoul, Korea, pp. 148-152.
  8. Kim C. 2003. Effects of Flute Profile Conformation on the Material Mechanics of Corrugated Fiberboard. The Graduate School of Dongguk University, Seoul, Korea, pp. 51-55, 89-102.
  9. Kim SC. 1996. Technology of corrugated fiberboard. Yejin publishing Co., pp. 72-81.
  10. Maltenfort GG. 1996. Corrugated shipping containers-an engineering approach. Jelmar publishing Co., Inc., New York, USA, pp. 85-88, 148-150.
  11. Mayosky JE. 1995. An evaluation of Asian old corrugated containers. Tappi J. 78: 118.
  12. McKee RC, Whitsitt WT, Smith CN. 1971. Box performance. Paperboard Packaging 9:36-47.
  13. McKee RC, Gander JW, Wachuta JR. 1963. Compression strength formula for corrugated board boxes. Paperboard Packaging 48: 144-159.
  14. McKee RC, Gander JW. 1967. Properties of corrugating medium which influence runnability. Tappi J. 50: 35A-40A.
  15. Nazhad MM, Paszner L. 1994. Fundamentals of strength loss in recycled paper. Tappi J. 77: 171-179.
  16. Nordman L, Tori M. 1989. Factors contributing to High-Low Defects in Corrugated Board, Performance and Evaluation of Shipping Containers, Maltenfort G.G. Jelmar Publishing Co., Inc., New York, USA, pp. 269-273.
  17. Park JM. 1998. Studies of strength optimization of paperboardstacked structure (I)(II)(III)-structural properties analysis. J. Ind. Sci. Technol. 6: 229-255.
  18. Peterson WS. 1980. Minimum-cost design for corrugated containers under top to bottom compression. Tappi J. 63: 143-146.
  19. Shioya YH. 1982. Studies on evaluation & performance of fingerless single facer for the corrugated fiberboard The Monthly Paper Pulp Technol. Times, Tokyo, Japan, pp.84-104.
  20. Shioya YH, Suzuki NA. 1982. Studies on sources of the vibration on single facer and the evaluation of high-low corrugation. Japan Tappi J. 36: 29-41.
  21. Urbanik TJ. 1997. Linear and nonlinear material effects on postbuckling strength of corrugated containers. Mechanics of cellulosic materials, CA, USA, pp. 103-105.
  22. Westerlind BS, Carlsson LA. 1992. Compressive response of corrugated board, Tappi J. 75: 145-154.