Effect of Corrugation Fluting on the Compressive Strength of Corrugated Fiberboard Box for Food Packaging

골판지의 골 성형이 식품포장용 골판지 상자의 압축강도에 미치는 영향

  • Kim, Cheong (Department of Food Science and Technology, Dongguk University) ;
  • Her, Jae-Young (Department of Food Science and Technology, Dongguk University) ;
  • Lee, Kwang-Geun (Department of Food Science and Technology, Dongguk University)
  • 김청 (동국대학교 식품공학과) ;
  • 허재영 (동국대학교 식품공학과) ;
  • 이광근 (동국대학교 식품공학과)
  • Received : 2009.08.12
  • Accepted : 2010.03.31
  • Published : 2010.05.30

Abstract

In this study, we performed corrugation fluting experiments to examine the relationship between high-low corrugation of a corrugated medium and compressive strength of corrugated containers for food packaging. A low-grade corrugated medium was found to suffer from weak tensile resistance and to be prone to stealing, which tends to produce low corrugation. In contrast, a medium with a large corrugation deviation often caused slimming during fluting and produced irregular corrugations. Experiments of high-low corrugation distribution according to corrugated medium grades indicate that a high grade medium shows a smaller ratio of low corrugation. The thickness of corrugated fiberboard is weakly correlated to the basis weight of medium, yet positively correlated to the medium thickness (y=3.9732x+4.2712, $R^{2}=0.8142$) and inversely proportional to the medium density (y=-3.1213x+6.8736, $R^{2}=0.9919$). Compressive strength of a corrugated fiberboard box is low, if made of corrugated medium with large low corrugation distribution. Compressive strength showed 13% variation with respect to medium grades and 21% variation for various test samples. The corrugation fluting of a corrugated medium is related to physical properties such as basis thickness and density.

본 연구는 일정한 실험조건 하에서 골심지 시료에 따른 골 성형 실험을 행하여 골심지에 의한 하이로골의 발생과 골판지상자의 압축강도의 관계에 대하여 조사하였다. 골판지의 골 높이가 낮은 골(low corrugation)의 비율이 많은 골심지 그레이드는 장력 변동의 저항에도 약하며 골심지의 이탈력에 의한 강탈(stealing)이 일어나기 쉽고, 결과적으로 낮은 골 비율이 높아졌으며, 골심지 두께 편차가 큰 골심지는 골 성형 시에 슬립현상을 발생하기 쉽기 때문에 불규칙한 골을 연속 형성하는 경향이 있었다. 또한 골심지의 그레이드에 따른 하이로골 분포비율의 실험결과 일반적 경향으로는 그레이드가 높은 골심지 일수록 낮은 골비율이 적었다. 골 성형된 골판지 시트의 두께의 경우는 원지 평량과의 상관성은 적고 골심지 두께와 상관하며 y=3.9732x+4.2712, $R^{2}=0.8142$), 골심지의 밀도에 역상관한다((y=-3.1213x+6.8736, $R^{2}=0.9919$). 하이로골 중에서 낮은 골 분포를 크게 나타낸 골심지 재료의 골판지로 만든 골판지상자의 압축강도가 현저히 낮고 골심지 시료의 그레이드에 따라 13%의 차이가 있었으며 압축강도의 편차도 골심지의 시료에 따라 21%로 크며, 골심지 골은 원지의 두께 및 밀도 등 물리적 특성치의 변동과 관계한다.

Keywords

References

  1. Batelka JJ. 1994. The effect of boxplant operations on corrugated board edge crush test. Tappi J. 77: 193-198.
  2. Boonyasarn A, Harte BR, Twede D, Lee JL. 1992. The effect of cyclic environments on the compression strength of boxes made from high-performance (fiber-efficient) corrugated fiberboard. Tappi J. 75: 79-85.
  3. Bronkhorst CA. 1997. Towards a more mechanistic understanding of corrugated container creep deformation behavior. J. Pulp Paper Sci. 23: 174-175.
  4. Crisp CJ, Scott RA, Tomlinson JC. 1968. Resistance of corrugated to flat crushing loads. Tappi J. 51: 80-83.
  5. Ince PJ, Urbanik TJ. 1985. Economics of fiber cost and compressive strength of single-wall corrugated boxes. Tappi J. 69: 102-105.
  6. Jonson P, Huteberg A. 1976. Compression Strength. Paperboard Packaging 61: 52-65.
  7. Kim C. 2007. Corrugated fiberboard packaging. Korea Packaging Industries Ltd., Seoul, Korea, pp. 148-152.
  8. Kim C. 2003. Effects of Flute Profile Conformation on the Material Mechanics of Corrugated Fiberboard. The Graduate School of Dongguk University, Seoul, Korea, pp. 51-55, 89-102.
  9. Kim SC. 1996. Technology of corrugated fiberboard. Yejin publishing Co., pp. 72-81.
  10. Maltenfort GG. 1996. Corrugated shipping containers-an engineering approach. Jelmar publishing Co., Inc., New York, USA, pp. 85-88, 148-150.
  11. Mayosky JE. 1995. An evaluation of Asian old corrugated containers. Tappi J. 78: 118.
  12. McKee RC, Whitsitt WT, Smith CN. 1971. Box performance. Paperboard Packaging 9:36-47.
  13. McKee RC, Gander JW, Wachuta JR. 1963. Compression strength formula for corrugated board boxes. Paperboard Packaging 48: 144-159.
  14. McKee RC, Gander JW. 1967. Properties of corrugating medium which influence runnability. Tappi J. 50: 35A-40A.
  15. Nazhad MM, Paszner L. 1994. Fundamentals of strength loss in recycled paper. Tappi J. 77: 171-179.
  16. Nordman L, Tori M. 1989. Factors contributing to High-Low Defects in Corrugated Board, Performance and Evaluation of Shipping Containers, Maltenfort G.G. Jelmar Publishing Co., Inc., New York, USA, pp. 269-273.
  17. Park JM. 1998. Studies of strength optimization of paperboardstacked structure (I)(II)(III)-structural properties analysis. J. Ind. Sci. Technol. 6: 229-255.
  18. Peterson WS. 1980. Minimum-cost design for corrugated containers under top to bottom compression. Tappi J. 63: 143-146.
  19. Shioya YH. 1982. Studies on evaluation & performance of fingerless single facer for the corrugated fiberboard The Monthly Paper Pulp Technol. Times, Tokyo, Japan, pp.84-104.
  20. Shioya YH, Suzuki NA. 1982. Studies on sources of the vibration on single facer and the evaluation of high-low corrugation. Japan Tappi J. 36: 29-41.
  21. Urbanik TJ. 1997. Linear and nonlinear material effects on postbuckling strength of corrugated containers. Mechanics of cellulosic materials, CA, USA, pp. 103-105.
  22. Westerlind BS, Carlsson LA. 1992. Compressive response of corrugated board, Tappi J. 75: 145-154.