Production of 2-Methoxy-1,4-benzoquinone (2-MBQ) and 2,6-Dimethoxy-1,4-benzoquinone (2,6-DMBQ) from Wheat Germ Using Lactic Acid Bacteria and Yeast

젖산균 및 효모를 이용한 밀배아로부터 2-Methoxy-1,4-benzoquinone (2-MBQ) 및 2,6-Dimethoxy-1,4-benzoquinone(2,6-DMBQ)의 생산

  • Yoo, Jong-Gil (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Kim, Myoung-Dong (School of Biotechnology and Bioengineering, Kangwon National University)
  • 유종길 (강원대학교 바이오산업공학부) ;
  • 김명동 (강원대학교 바이오산업공학부)
  • Received : 2010.09.15
  • Accepted : 2010.10.18
  • Published : 2010.11.30

Abstract

Wheat germ contains the glycosylated forms of 2-methoxy-p-benzoquinone (2-MBQ) and 2,6-dimethoxy-p-benzoquinone (2,6-DMBQ), both of which have antimicrobial and immunostimulatory effects. Conversion of glycosylated 2-MBQ and 2,6-DMBQ to their more functional unglycosylated forms requires enzymatic action of $\beta$-glucosidase. We investigated the applications of lactic acid bacteria and yeast that produce $\beta$-glucosidase as starters for production of unglycosylated 2-MBQ and 2,6-DMBQ from wheat germ. Lactobacillus zeae and Pichia pijperi were selected through $\beta$-glucosidase enzyme assays for 37 yeast strains and five strains of lactic acid bacteria. Lb. zeae was more efficient than P. pijperi at producing 2-MBQ and 2,6-DMBQ from wheat germ. After 48 hr of fermentation with a mixed culture of Lb. zeae and P. pijperi, the concentration of 2-MBQ was 0.46${\pm}$0.07 mg/g, indicating an approximately 1.6-fold higher concentration than that obtained by pure culture of Lb. zeae. However, the concentration of 2,6-DMBQ was not significantly enhanced by fermentation with a mixed culture of Lb. zeae and P. pijperi.

본 연구에서는 세포외 $\beta$-glucosidase를 생산하는 효모 37개 균주와 Lactobacillus 젖산균 5개 균주 중에서 세포외 $\beta$-glucosidase 효소활성이 우수한 Lactobacillus zeae와 Pichia pijperi을 선발하였고, 2-MBQ와 2,6-DMBQ 생산을 위한 밀배아 발효의 스타터로 사용하였다. P. pijperi 균주만을 이용하여 밀배아를 발효한 경우 2-MBQ는 거의 생성되지 않았으며, 2,6-DMBQ는 발효 개시 후 36시간과 48시간이 경과한 후 각각 $0.02{\pm}0.01$ mg/g 및 $0.02{\pm}0.001$ mg/g의 농도로 생성되었고 Lb. zeae 균주만을 이용하여 밀배아를 발효한 경우에는 발효개시 후 36시간과 48시간이 경과한 후 2-MBQ는 $0.21{\pm}0.02$ mg/g에서 $0.28{\pm}0.06$ mg/g으로 증가하였고 2,6-DMBQ 생성량의 유의적인 차이는 없었다. 효모와 젖산균을 동시에 사용하여 밀배아를 발효했을 때에는 발효 개시 후 36시간이 경과한 후 2,6-DMBQ의 생성량은 효모 및 젖산균을 단독으로 사용한 경우와 비교하여 유의적인 차이를 나타내지 않았지만 2-MBQ의 농도는 0.39${\pm}$0.06 mg/g을 나타내었으며 발효 48시간이 경과하면 더욱 증가하여 0.46${\pm}$0.07 mg/g을 나타내었다. 이러한 결과는 젖산균인 Lb. zeae 균주가 효모인 P. pjperi보다 상대적으로 2-MBQ 및 2,6-DMBQ를 생산하는데 중요한 역할을 하며, 두 균주를 동시에 사용하면 각 균주를 단독으로 사용한 경우와 비교하여 2-MBQ 및 2,6-DMBQ를 생산하는데 상승효과가 있음을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. Arfi K, Leclercq-Perlat MN, Baucher A, Tache R, Delettre J, Bonnarme P. 2004. Contribution of several cheese-ripening microbial associations to aroma compound production. Lait 84: 435-447. https://doi.org/10.1051/lait:2004016
  2. Avila M, Hidalgo M, Sanchez-Moreno C, Pelaez C. 2009. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res. Int. 42: 1453-1641. https://doi.org/10.1016/j.foodres.2009.07.026
  3. Baldrian P, Valá∨skova 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x
  4. Champagne CP, Tompkins TA, Buckley ND, Green-Johnson JM. 2010. Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiol. 27: 968-972. https://doi.org/10.1016/j.fm.2010.06.003
  5. Comin-Anduix B, Boros LG, Marin S, Boren J, Callol-Massot C, Centelles JJ, Torres JL, Agell N, Bassilian S, Cascante M. 2002. Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly (ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells. J. Biol. Chem. 277: 46408-46414. https://doi.org/10.1074/jbc.M206150200
  6. Decroos K, Vanhemmens S, Cattoir S, Boon N, Verstraete W. 2005. Isolation and characterization of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch. Microbiol. 183: 45-55. https://doi.org/10.1007/s00203-004-0747-4
  7. Donkor ON, Shah NP. 2008. Production of $\beta$-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J. Food Sci. 73: 15-20.
  8. Fajka-Boja R, Hidvegi M, Shoenfeld Y, Ion G, Demydenko D, Tomoskozi-Farkas R, Vizler C, Telekes A, Resetar A, Monostori E. 2002. Fermented wheat germ extract induces apoptosis and downregulation of major histocompatibility complex class I proteins in tumor T and B cell lines. Int. J. Oncol. 20: 563-570.
  9. Gobbetti M, Corsetti A, Rossi J. 1994. The sourdough microflora. Interactions between lactic acid bacteria and yeasts: metabolism of amino acids. World J. Microb. Biot. 10: 275-279. https://doi.org/10.1007/BF00414862
  10. Handa SS, Kinghorn AD, Cordell GA, Farnsworth NR. 1983. Plant anticancer agents. XXVI. Constituents of Peddiea fischeri. J. Nat. Prod. 46: 248-250. https://doi.org/10.1021/np50026a020
  11. Heimbach JT, Sebestyen G, Semjen G, Kennepohl E. 2007. Safety studies regarding a standardized extract of fermented wheat germ. Int. J. Toxicol. 26: 253-259. https://doi.org/10.1080/10915810701369709
  12. Hidvegi M, Raso E, Tomoskozi-Farkas R, Paku S, Lapis K, Szende B. 1998. Effect of avemar and avemar + vitamin C on tumor growth and metastasis in experimental animals. Anticancer Res. 18: 2353-2358.
  13. Hidvegi M, Raso E, Tomoskozi-Farkas R, Szende B, Paku S, Prnai L, Bocci J, Lapis K. 1999. MSC, a new benzoquinonecontaining natural product with antimetastatic effect. Cancer Biother. Radiopharm. 14: 277-288. https://doi.org/10.1089/cbr.1999.14.277
  14. Hong SW, You LK, Jung BM, Kim SW, Chung KS. 2009. Characterization of ${\alpha}$-galactosidase and ${\beta}$-glucosidase by Weissella cibaria. Kor. J. Microbiol. Biotechnol. 37: 204-212.
  15. Huang JX, Bouvier ESP, Stuart JD, Melander WR, Horvth CS. 1985. High-performance liquid chromatography of substituted phyrodoquinones and p-hydroquinone. J. Chromatogr. 330: 181-192. https://doi.org/10.1016/S0021-9673(01)81976-2
  16. Kim MK, Lee JW, Lee JW, Lee KY, Yang DK. 2005. Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J. Microbiol. 43: 456-462.
  17. Lana EJ, Carazza F, Takahashi JA. 2006. Antibacterial evaluation of 1,4-benzoquione derivatives. J. Agric. Food Chem. 54: 2053-2056. https://doi.org/10.1021/jf052407z
  18. Liu SQ, Tsao M. 2009. Enhancement of survival of probiotic and non-probiotic lactic acid bacteria by yeasts in fermented milk under non-refrigerated conditions. Int. J. Food Microbiol. 135: 34-38. https://doi.org/10.1016/j.ijfoodmicro.2009.07.017
  19. Miura T, Yuan L, Sun B, Fujii H, Yoshida M, Wakame K, Kosuna K. 2002. Isoflavone aglycone produced by culture of soybean extracts with Basidiomycetes and its anti-angiogenic activity. Biosci. Biotechnol. Biochem. 66: 2626-2631. https://doi.org/10.1271/bbb.66.2626
  20. Pyo YH, Lee TC, Lee YC. 2005. Enrichment of bioactive isoflavones in soymilk fermented with ${\beta}$-glucosidase-producing lactic acid bacteria. Food Res. Int. 38: 551-539. https://doi.org/10.1016/j.foodres.2004.11.008
  21. Rekha CR, Vijayalakshmi G. 2010. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J. Appl. Microbiol. 109: 1198-1208. https://doi.org/10.1111/j.1365-2672.2010.04745.x
  22. Szent-Gyorgyi A. 1972. The living state, with observations on cancer. Academic Press, New York, p. 71.
  23. Szent-Gyorgyi A. 1982. Biological oxidation and cancer. Int. J. Quantum Chem. 22: 27-30.
  24. Telekes A, Hegedus M, Chae CH, Vekey K. 2009. Avemar (wheat germ extract) in cancer prevention and treatment. Nutr. Cancer 61: 891-899. https://doi.org/10.1080/01635580903285114
  25. Telekes A, Kiss-Toth E, Nagy T, Qwarnstrom EE, Ksz E, Polgar T, Resetr A, Dower SK, Duda E. 2005. Synergistic effect of Avemar on proinflammatory cytokine production and ras-mediated cell activation. Ann. N.Y. Acad. Sci. 1051: 515-528. https://doi.org/10.1196/annals.1361.096
  26. Tomoskozi-Farkas R, Daood HG. 2004. Modification of chromatographic method for the determination of benzoquinones in cereal products. Chromatographia 60: 227-230.
  27. Tomoskozi-Farkas R, Hidvegi M. 1996. Liquid chromatographic determination of substituted p-benzo and hydroquinones in tree sample. J. Hung. Chem. 102: 320.
  28. Tomoskozi-Farkas R, Hidvegi M, Lasztity R. 1998. Investigation of 2,6-dimethoxy-benzoquinone in eight tree species grown in Hungary. Acta Biol. Hung. 49: 79.
  29. Yu JH, Lew ID, Park CK, Kong IS. 1987. Lactic acid fermentation of soymilk by mixed cultures of Lactobacillus acidophilus and Kluyveromyces fragilis. Kor. J. Appl. Microbiol. Bioeng. 15: 162-169.
  30. Yu JH, Oh DH, Kong IS, Park YS, Lim HC. 1988. Study on mixed cultures of Lactobacillus acidophilus and Saccharomyces cerevisiae in soymilk. Kor. J. Appl. Microbiol. Bioeng. 16: 131-135.