Analysis of Genetic Diversity of Apple Cultivars Using RAPD and SSR Markers

RAPD와 SSR 마커를 이용한 사과 품종의 유전적 다양성 분석

  • Cho, Kang-Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Heo, Seong (Apple Experiment Station, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Jeong-Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Shin, Il Sheob (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Han, Sang Eun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Se Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Dae-Hyun (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Hyun Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 조강희 (국립원예특작과학원 과수과) ;
  • 허성 (국립원예특작과학원 사과시험장) ;
  • 김정희 (국립원예특작과학원 과수과) ;
  • 신일섭 (국립원예특작과학원 과수과) ;
  • 한상은 (국립원예특작과학원 과수과) ;
  • 김세희 (국립원예특작과학원 과수과) ;
  • 김대현 (국립원예특작과학원 과수과) ;
  • 김현란 (국립원예특작과학원 과수과)
  • Received : 2010.11.23
  • Published : 2010.12.31

Abstract

In this study, random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) analyses were utilized for evaluation of genetic diversity of 34 Korean bred and introduced apple cultivars. Thirty-seven RAPD primers detected a total of 193 polymorphic bands (36.2%) with an average of 5.6. Twenty-six SSR markers generated a total of 112 alleles with an average 4.3 alleles per locus. Genetic diversity of 34 cultivars estimated by polymorphic information content (PIC) value ranged from 0.536 (CH03d12) to 0.952 (CH04c06) with an average of 0.843. By UPGMA (unweighted pair-group method arithmetic average) cluster analysis with 305 polymorphic bands, the apple cultivars were classified four groups by similarity index of 0.640. The 'Seokwang' was included in group I. Group II consisted of 12 cultivars which have 'Golden Delicious' in their pedigree, with the exception of 'Spur Earliblaze' and 'Jonathan'. Group III included 13 cultivars which have usually 'Fuji' in their ancestry and bud sport of 'Fuji' cultivars. Group IV consisted of 8 cultivars with 'Hongro', 'Gamhong', and 'Saenara'. Similarity values among the tested apple cultivars ranged from 0.529 to 0.987, and the average similarity value was 0.647. The similarity index was the highest (0.987) between 'Hwarang' and 'Danhong', and the lowest (0.529) between 'Seokwang' and 'Hwarang'. The genetic relationships among the 34 studied apple cultivars were basically consistent with the known pedigree.

본 연구는 사과 품종의 유전적 다양성을 분석하여 육종의 기초 자료로 활용하기 위하여 최근에 국내에서 육성된 품종 및 도입품종을 포함한 34품종을 대상으로 RAPD와 SSR 분석을 수행하였다. RAPD분석에서 총 37종의 선발된 임의 primer를 분석하여 193개의 다형성 밴드(36.2%)를 얻었으며, 평균 다형성 밴드 수는 5.6개였다. SSR 마커 26종을 이용하여 분석한 결과 총 112개의 대립인자가 확인되었고, 마커 당 대립인자 수는 평균 4.3개였다. 유전적 다양성(PIC 값)은 평균 0.843이었고 범위는 0.536(CH03d12)-0.952(CH04c06)였다. RAPD와 SSR분석에서 획득된 305개의 다형성 밴드를 이용하여 UPGMA(비가중 평균결합) 방식으로 유사도 및 집괴분석을 수행한 결과 유전적 유사도 0.640를 기준으로 4개의 그룹으로 분류되었다. 제1그룹에는 '서광'이 단독으로 분류되었고, 제2그룹에는 12품종이 속하였는데 'Spur Earliblaze'와 'Jonathan'을 제외하고 대부분 'Golden delicious'를 교배친으로 이용하여 육성된 품종이 분포하는 것으로 나타났다. 제3그룹에는 'Fuji'와 'Fuji'를 교배친으로 이용되여 선발된 품종 및 그의 아조변이 품종 등 13개 품종이 속하였고 제4그룹에는 '홍로', '감홍', '새나라' 등 8품종이 포함되었다. 품종간 유전적 유사도는 0.529-0.987의 범위로 평균 유전적 유사도는 0.647이었다. 가장 높은 유사도 값(0.987)을 나타낸 품종은 '화랑'과 '단홍' 품종 간이었고 가장 낮은 유사도 지수(0.529)를 나타낸 품종은 '서광'과 '화랑' 품종 간이었다. 본 실험을 통해 사과 34품종 간의 유연관계는 알려진 pedigree와 일치하는 것을 알 수 있었다.

Keywords

References

  1. Arias RS, Ballard LL, Scheffler BE. 2009. UPIC: Pearl scripts to determine the number of SSR markers to run. Bioinformation 3:352-360. https://doi.org/10.6026/97320630003352
  2. Caetano-Anoles G, Bassam BJ, Gresshoff PM. 1991. DNA fingerprinting: A strategy for genome analysis. Plant Mol Biol Rpt 9:294-307. https://doi.org/10.1007/BF02672006
  3. Dunemann F, Kahnau R, Shmidt H. 1994. Genetic relationships in Malus evaluated by RAPD 'fingerprinting' of cultivars and wild species. Plant Breeding 113:150-159. https://doi.org/10.1111/j.1439-0523.1994.tb00717.x
  4. Ellsworth DL, Rittenhouse KD, Honeycutt RL. 1993. Artifactual variation in randomly amplified polymorphic DNA banding patterns. BioTechniques 14:214-217.
  5. Galli Z, Halaz G, Kiss E, Heszky L, Dobránszki J. 2005. Molecular identification of commercial apple cultivars with microsatellite markers. HortScience 40:1974-1977.
  6. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C. 1998. Simple sequence repeats for genetic analysis of apple. Theor Appl Genet 96:1069-1076. https://doi.org/10.1007/s001220050841
  7. Goulao L, Cabrita L, Oliveira CM, Leitao JM. 2001. Comparing RAPD and $AFLP^TM$ analysis in discrimination and estimation of genetic similarities among apple (Malus domestica Borkh.) cultivars. Euphytica 119:259-270. https://doi.org/10.1023/A:1017519920447
  8. Goulao L, Oliveira CM. 2001. Molecular characterisation of cultivars of apple (Malus $\times$ domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122:81 -89. https://doi.org/10.1023/A:1012691814643
  9. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H, Forster R. 1997. Microsatellites in Malus $\times$ domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249-254. https://doi.org/10.1007/s001220050407
  10. Harada T, Matsukawa K, Sato T, Ishikawa R, Niizeki M, Saito K. 1993. DNA-RAPD detect genetic variation and paternity in Malus. Euphytica 65:87-91. https://doi.org/10.1007/BF00022569
  11. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR. 1998. Microsatellite(SSR) markers reveal genetic identities, genetic diversity and relationship in a Malus $\times$ domestica borkh. core subset collection. Theor Appl Genet 97:671-683. https://doi.org/10.1007/s001220050943
  12. Janick J, Cummins JN, Brown SK, Hemmat M. 1996. Apples. In: J. Janick, J.N. Moore, eds, Fruit Breeding, Vol I: Tree and Tropical Fruits. JohnWiley and Sons, New York, pp 1-77.
  13. Koller B, Lehmann A, McDermott JM, Gessler C. 1993. Identification of apple cultivars using RAPD markers. Theor Appl Genet 85:901-904.
  14. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C. 2002. Development and characterization of 140 new microsatellites in apple (Malus $\times$ domestica Borkh.). Molecular Breeding 10:217 -241. https://doi.org/10.1023/A:1020525906332
  15. Muralidharan K, Wakeland EK. 1993. Concentration of primer and template qualitatively affects products in random- amplified polymorphic DNA PCR. BioTechniques 14:362-364.
  16. Roder MS, Plaschke J, Konig SU, Borner A, Sorrells ME, Tanksley SD, Ganal MW. 1995. Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327-333. https://doi.org/10.1007/BF00288605
  17. Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A. 2006. Microsatellite markers spanning the apple (Malus $\times$ domestica Borkh.) genome. Tree Genetics & Genomes 2:202-224. https://doi.org/10.1007/s11295-006-0045-1
  18. Venturi S, Dondini L, Donini P, Sansavini S. 2006. Retrotransposon characterisation and fingerprinting of apple clones by S-SAP markers. Theor Appl Genet 112:440-444. https://doi.org/10.1007/s00122-005-0143-8
  19. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BB, Powell W. 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687-694. https://doi.org/10.1007/s004380050372
  20. Yae BW. 1994. Classification of Malus domestica cultivars by random amplified polymorphic DNA and selection of markers for cultivar identification. Ph.D. Thesis. Seoul National University. pp.66.