'일품'벼 체세포변이체의 표현형과 후대변이

Morphological and Progeny Variations in Somaclonal Mutants of 'Ilpum' (Oryza sativa L.)

  • 박영희 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 김태헌 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 이현숙 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 김경민 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 손재근 (경북대학교 농업생명과학대학 응용생명과학부)
  • Park, Young-Hie (School of Plant Biosciences, Kyungpook National University) ;
  • Kim, Tae-Heun (School of Plant Biosciences, Kyungpook National University) ;
  • Lee, Hyun-Suk (School of Plant Biosciences, Kyungpook National University) ;
  • Kim, Kyung-Min (School of Plant Biosciences, Kyungpook National University) ;
  • Sohn, Jae-Keun (School of Plant Biosciences, Kyungpook National University)
  • 투고 : 2010.09.16
  • 발행 : 2010.09.30

초록

국내에서 육성된 품종인 '일품'을 대상으로 현미배양 후대의 주요 농업형질에 대한 변이체의 발생양상과 범위 및 종류 등을 조사하고 변이집단의 크기와 변이집단의 육종적 유용성에 대한 결과는 다음과 같다. '일품' 완숙현미 유래 캘러스로부터 424개체의 식물체를 재분화하고 297개체로부터 종자를 채종하여 계통 재배하면서 간장, 출수기 등 주요 농업형질과 형태적 변이를 조사하였다. 주요 농업형질과 형태적 특성이 모품종과 다른 변이체는 전체의 21.5%인 64계통이었으며 조사한 형질 중 변이의 발생빈도가 가장 높았던 형질은 출수기로 9.1%인 27계통이었고 'opaque endosperm'이 1.7%, 'rolling leaf'가 1.3% 등이었다. $S_2$세대의 분리는 출수기가 가장 많았으며 'dwarf/semi dwarf'와 'rolling leaf' 및 'opaque endosperm' 변이체는 $S_1$세대에서는 계통 내 분리를 보였으나 $S_2$ 세대 에서는 분리하지 않았다. 이상의 결과에서 보면 조직 배양 후대에 발생하는 변이는 생성범위가 넓고 빈도 또한 높아 새로운 유전자원으로 유용하게 활용할 수 있을 것으로 생각된다.

A total of 424 plants was regenerated from the seed-culture of a rice cultivar, 'Ilpum'. The regenerated plants were grown in a greenhouse. The 297 plants with high fertility were selected among 424 plants. The harvested seeds from each plant were planted to each line at experiment field in 2008 and 2009. The each line was evaluated for the agronomic and morphological traits, also. The 64 lines (21.5%) showed significant differences in agronomic and morphological traits from donor cultivar 'Ilpum' among 297 lines. The heading date different from donor cultivar 'Ilpum' showed highest frequency in 297 lines, and accounts for 9.1% (29 lines). The phenotype of opaque endosperm and rolling leaf account for 1.7% and 1.3% in 297 lines, respectively. The genetic segregation was observed in dwarf/semi-dwarf, rolling leaf and opaque endosperm at $S_1$ generation, but not in $S_2$ generation. These results suggest that the mutant derived from a tissue-culture will be one of the promising genetic resources, due to its wide variation and high frequency of mutation, comparatively.

키워드

참고문헌

  1. Cao J, Rush MC, Nabors MW, Xie QJ, Croughan TP, Nowick E. 1991. Development and inheritance of somaclonal variation in rice. In : S. K. Dutta and C. Sloger(eds), pp 382-420. Biological Nitrogen Fixation Associated with Rice Production. Oxford and PIBH Publishing, New Delhi, India.
  2. Choi YH, Kim KH, Chio HC, Hwang HG, Kim YG, Kim KJ, Lee YT. 2006. Analysis of Grain Quality Properties in Korea-bred Japonica Rice Cultivars. Korean J. Crop Sci. 51(7):624-631.
  3. Gavazzi G, Tonelli C, Todesco G, Arreghini E, Raffaldi F, Vecchio F, Barbuzzi G, Biasini M. Sala F. 1987. Somaclonal variation versus chemically induced mutagenesis in tomato (Lycopersicon esculentum L.). Theor. Appl. Genet. 74:733-738.
  4. Hirochika H, Otsuki H, Yoshikawa M, Otsuki Y, Sugimoto K, Takeda S. 1996a. Autonomous transposition of the tobacco retrotransposon Tto 1 in rice. The Plant Cell 8:725-734. https://doi.org/10.1105/tpc.8.4.725
  5. Hirochika H, Sugimoto K, Otski Y, Tsugawa H, Kanda M. 1996b. Retrotransposones of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93:7783-7788. https://doi.org/10.1073/pnas.93.15.7783
  6. Kawata M, Harada S, Antonio B, Oono K. 1992. Protoclonal variation of plant regeneration in rice. Plant Cell. Tissue and Organ Culture 28:1-10. https://doi.org/10.1007/BF00039909
  7. Kidwell MG, Lisch D. 1997. Transposable elements as source of variation in animals and plants. Proc. Natl. Acd. Sci. USA, 9:7704-7711.
  8. Kidwell MG, Lisch D. 2000. Transposable elements and host genome evolution. Trends Ecol. Evol. 15:95-99. https://doi.org/10.1016/S0169-5347(99)01817-0
  9. Larkin PJ, Scowcroft WR. 1981. Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theo. Appl. Genet. 60:197-214. https://doi.org/10.1007/BF02342540
  10. Larkin PJ, Bank PM, Bhati R, Brettelli RIS, Davies PA, Ryan SA, Scowcroft WR, Spindle LH, Tanner GT. 1989. From somatic variant to variant plants : mechanisms and applications. Genomes 31:705-711. https://doi.org/10.1139/g89-128
  11. Lim SJ, Hwang HG, Oh BG, Nam MH, Kwak DY, Yi GH, Park NB. 1998. Variation of physicochemical characteristics of grain in rice plants derived from cell culture. RDA J. Crop Sci. V. 40(2):9-13.
  12. Mandal AB, Ansari MM., Sharma TVRS, Bandyopadhyay AK. 1995. Somaclonal variation for disease resistance in indica rice. Rice Biotech. Quarterly 23:8-9.
  13. Nishi TY, Yamada, Takahashi E. 1968. Organ redifferentiation and plant restoration in rice callus. Nature 219:508-509. https://doi.org/10.1038/219508a0
  14. Ogura H, Kyozukan J, Hayashi Y, Shimamoto K. 1989. Yielding ability and phenotypic traits in the selfed progeny of protoplast-derived rice plants. Japan J. Breed. 39:47-56. https://doi.org/10.1270/jsbbs1951.39.47
  15. Oono K : 1978. High frequency mutation in rice plants regenerated from seed callus. pp 52 (abst), Fourth Int. Congr. Plant Tissue Cell Culture, Calgary, Canada.
  16. Oono K.1985. Putative homozygous mutations in regenerated plants of rice. Mol. Gen. Genet. 198:377-384. https://doi.org/10.1007/BF00332926
  17. Sathish P, Gamborg LOL, Nabors MW. 1995. Rice anther culture : callus initiation and androclonal variation in progenies of regenerated plants. Plant Cell Reports 14:432-436.
  18. Schaeffer GW, Sharpe Jr FT, Cregan PB. 1984. Variation for improved protein and yield from rice anther culture. Theor. Appl. Genet. 67:383-389.
  19. Schaeffer GW, Sharpe Jr FT, Dudley JT. 1992. Rice protein mutant expressed in liquid suspension cultures : chitinase, B-glucannases and other proteins, Theor. Appl. Genet. 84:26-32.
  20. Sohn JK, Kwon OH, Cheong ST, Rhee IK. 1991. Variation of agronomic characters in regenerated plants from callus culture of rice. Korean J. Breed. 23(3):181-187.
  21. Sohn JK, Yi GH, Oh BG, Lim SJ. 1995. Variation of some agronomic traits in anther-derived rice plants. Korean J. Breed 27(4):404-408.
  22. Unnevehr LJ, Duff B, Juliano BO. 1992. Consumer demand for rice grain quality. International Rice Research Institute, Manila, and International Development Research Center, Ottawa.
  23. Wang ZX, Feng Y. S, Peng W. 1981. A preliminary genetic study on pollen-plants in rice. Hereditas 3:19-23.
  24. Xie QJ, Rush MC. 1990. Somaclonal variation for disease resistance in rice(Oryza. sativa. L.), In : B. T. Grayson et al.(ed.) pp 491-519. Pest management in rice. Elsever Applied Science, New York.
  25. Xie QJ, Ruch C, Oard JH. 1995. Homozygous variation in rice somaclones : Non random variation instead of mitotic recombination, Crop Sci. 35:954-957. https://doi.org/10.2135/cropsci1995.0011183X003500040002x
  26. Yamagishi M, Itoh K, Koba T, Sukekiyo Y, Shimamoto K, Shimada T. 1997. Characteristics of genetic variation in the progenies of protoplast-derived plants of rice. Oryza sativa cv. Nipponbare, Theor. Appl. Genet. 94:1-7. https://doi.org/10.1007/s001220050374
  27. Yi GH, Nam MH, Oh BG, Choi HC, Kim SC, Sohn J K.1999. Genetic behaviors of variants derived from rice cell culture. Korean J. Breed. 31(3):280-285.