DOI QR코드

DOI QR Code

Fracture Characteristics of Flame Thermal Shock in PSZ/NiCrAlY FGM

세라믹(PSZ)/금속(NiCrAlY) 경사기능성 복합재료의 화염 열충격 파괴특성

  • Song, Jun-Hee (Department of Mechanical & Automotive Engineering, Jeonju University) ;
  • Mun, Sang-Don (Department of Mechanical Design Engineering, Chonbuk National University)
  • 송준희 (전주대학교 기계자동차공학과) ;
  • 문상돈 (전북대학교 기계설계공학부)
  • Received : 2010.02.12
  • Published : 2010.08.22

Abstract

Functionally graded materials (FGM) of PSZ/NiCrAlY on Inconel substrate were fabricated by detonation gun spraying method. A thick ceramic layer generally has a high thermal barrier effect however, because failure often occurs, the use of an FGM layer gives an advantage in thermal property. During the thermal shock test, micro fracture processes were detected by the AE method. Also, the thermal shock test was performed for NFGM, FGM and the changed FGM in the layered composition profile. It was found through AE testing and the observation of fracture surface that FGM was superior to NFGM in thermal shock properties. The linear or metal-rich type FGM in composition profile had the best resisting property among the FGM. It was found that the controlled composition profile of the graded layers had better thermal properties.

Keywords

References

  1. Wook Jin Lee et al., J. Kor. Inst. Met. & Mater. 46, 538 (2008).
  2. Jingchuan Zhu, Zhonghong Lai, Zhongda Yin, Jaeho Jeon, and Sooyoung Lee, Materials Chemistry and Physics 68 130 (2001). https://doi.org/10.1016/S0254-0584(00)00355-2
  3. Dae Joong Yeon et al., J. Kor. Inst. Met. & Mater. 38, 159 (2000).
  4. Dae Joong Yeon et al., J. Kor. Inst. Met. & Mater. 38, 716 (2000).
  5. Dae Hyun Song et al., J. Kor. Inst. Met. & Mater. 38, 785 (2000).
  6. Jong Ho Shin et al., J. Kor. Inst. Met. & Mater. 38, 1490 (2000).
  7. In Jin Shon and Hwan Cheol Kim, J. Kor. Inst. Met. & Mater. 35, 1763 (1997).
  8. Seung Chan Oh, J. Kor. Inst. Met. & Mater. 34, 1509 (1996).
  9. C. Kastritseas, P. A. Smith, and J. A. Yeomans, Composites Science and Technology 65, 1880 (2005). https://doi.org/10.1016/j.compscitech.2005.04.004
  10. Bao-Lin Wang, Yiu-Wing Mai, and Xing-Hong Zhang, Acta Materialia 52, 4961 (2004). https://doi.org/10.1016/j.actamat.2004.06.008
  11. Jun Zhao, Xing Ai, Jianxin Deng, and Zhaoxia Wang, Materials Science and Engineering A 382, 23 (2004). https://doi.org/10.1016/j.msea.2004.04.054
  12. Bin Zhou and Klod Kokini, Acta Materialia 52, 4189 (2004). https://doi.org/10.1016/j.actamat.2004.05.035
  13. Qiang Liu, Xun Chen, and Nabil Gindy, International Journal of Machine Tools and Manufacture 46, 284 (2006). https://doi.org/10.1016/j.ijmachtools.2005.05.017
  14. D. E. Lee, I. Hwang, C. M. O. Valente, J. F. G. Oliveira, and D. A. Dornfeld, International Journal of Machine Tools and Manufacture 46, 176 (2006). https://doi.org/10.1016/j.ijmachtools.2005.04.001
  15. H. Moriya, T. Fujita, H. Niitsuma, J. Eisenblatter, and G. Manthei, International Journal of Rock Mechanics and Mining Sciences 43, 49 (2006). https://doi.org/10.1016/j.ijrmms.2005.04.003
  16. T. Chotard, D. Rotureau, and A. Smith, Journal of the European Ceramic Society 25, 3523 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.09.019