DOI QR코드

DOI QR Code

Mixing Behavior and Microstructural Development During Fabrication of Fe Micro-nano-powder Feedstock for Micro-PIM

마이크로 PIM용 Fe 마이크로-나노 복합분말 피드스톡 제조시 혼합거동과 미세구조 변화

  • You, Woo-Kyung (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Ko, Se-Hyun (Eco Materials & Processing Department, Korea Institute of Industrial Technology) ;
  • Lee, Won-Sik (Eco Materials & Processing Department, Korea Institute of Industrial Technology)
  • 유우경 (한양대학교 금속재료공학과) ;
  • 이재성 (한양대학교 금속재료공학과) ;
  • 고세현 (한국생산기술연구원 에코공정 연구부) ;
  • 이원식 (한국생산기술연구원 에코공정 연구부)
  • Received : 2010.02.22
  • Published : 2010.07.22

Abstract

The present investigation has been performed on the mixing behavior and microstructural development during fabrication of Fe micro-nano powder feedstock for a micro-powder injection molding process. The mixing experiment using a screw type blender system was conducted to measure the variations of torque and temperature during mixing of Fe powder-binder feedstock with progressive powder loading for various nano-powder compositions up to 25%. It was found that the torque and the temperature required in the mixing of feedstock increased proportionally with increasing cumulative powder loading. Such an increment was larger in the feedstock containing higher content of nano-powder at the same powder loading condition. However, the maximum value was obtained at the nano-powder composition of not 25% but 10%. It was owing to the 'roller bearing effect' of agglomerate type nano-powder acting as lubricant during mixing, consequently leading to the rearrangement of micro-nano powder in the feedstock. It is concluded that the improvement of packing density by rearrangement of nano-powders into interstices of micro-powders is responsible for the maximum powder loading of about 71 vol.% in the nano-powder composition of 25%.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. R. M. German and A. Bose, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation Princeton, New Jersey (1997).
  2. R. M. German, Draft Report - Workshop on Medical Application of Micro PIM, National Science Foundation, Korea-US Science Cooperation Center (2009).
  3. L. Liu, N. H. Loh, B. Y. Tay, S. B. Tor, Y. Murakoshi, and R. M. German, Mater. Char. 54, 230 (2005). https://doi.org/10.1016/j.matchar.2004.11.014
  4. Z. Y. Liu, N. H. Loh, S. B. Tor, K. A. Khor, Y. Murakoshi, R. Maeda, and T. Shimizu, J. Mater. Proc. Tech. 127, 165 (2002). https://doi.org/10.1016/S0924-0136(02)00119-X
  5. G. Fu, N. H. Loh, S. B. Tor, Y. Murakoshi, and R. Maeda, Mater. Des. 25, 729 (2004). https://doi.org/10.1016/j.matdes.2004.01.013
  6. C. Quinard, T. Barrere, and J. C. Gelin, Powder Tech. 190, 123 (2009). https://doi.org/10.1016/j.powtec.2008.04.044
  7. E. S. Yoon, J. S. Lee, S. T. Oh, and B. K. Kim, Int. J. Refr. Met. Hard Mater. 20, 201 (2002). https://doi.org/10.1016/S0263-4368(02)00003-3
  8. H. Y. Nam, S. K. Kwon, Y. S. Kang, and J. S. Lee, Mater. Sci. Forum 449, 1141 (2004).
  9. B. H. Cha, Y. S. Kang, and J. S. Lee, J. Jpn. Soc. Powder Powder Metall. 53, 769 (2006). https://doi.org/10.2497/jjspm.53.769
  10. P. Suri, S. V. Atre, R. M. German, and J. P. de Souza, Mater. Sci. Eng.(A) 365, 337 (2003).
  11. T. Hartwig, G. Veltl, F. Petzoldt, H. Kunze, R. Scholl, and B. Kieback, J. Euro. Ceram. Soc. 18, 1211 (1998). https://doi.org/10.1016/S0955-2219(98)00044-2
  12. Z .Y. Liu, N. H. Loh, S. B. Tor, K. A. Khor, Y. Murakoshi, and R. Maeda, Mater. Lett. 48, 31 (2001). https://doi.org/10.1016/S0167-577X(00)00276-7
  13. Y. M. Li, X. Q. Liu, F. H. Luo, and J. L. Yue, Trans. Nonferrous Met. Soc. China 17, 1 (2007). https://doi.org/10.1016/S1003-6326(07)60039-9
  14. K. Nishiyabu, K. Kakishita, and S. Tanaka, Mater. Sci. Forum 534-536, 381 (2007). https://doi.org/10.4028/www.scientific.net/MSF.534-536.381
  15. S. S. Jung, Y. S. Kang, and J. S. Lee, Mater. Sci. Forum 534, 153 (2007).
  16. S. S. Jung, E. S. Yoon, and J. S. Lee, J. Kor. Inst. Met. & Mater. 47, 597 (2009).
  17. B. Zeep, P. Norajitra, V. Piotter, J. Boehm, R. Ruprecht, and J. Hausselt, Fusion Eng. Des. 82, 2660 (2007). https://doi.org/10.1016/j.fusengdes.2007.07.013
  18. R. Supati, N. H. Loh, K. A. Khor, and S. B. Tor, Mater. Lett. 46, 109 (2000). https://doi.org/10.1016/S0167-577X(00)00151-8
  19. R. M. German, Powder Injection Molding, Metal Powder Industries Federation Princeton, New Jersey (1990).
  20. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Champman & Hall, London (1992).
  21. G. Aggarwal, S. J. Park, and I. Smid, Int. J. Refr. Met. Hard Mater. 24, 253 (2006). https://doi.org/10.1016/j.ijrmhm.2005.06.003
  22. R. M. German, Particle Packing Characteristics, Metal Powder Industries Federation Princeton, New Jersey (1989).
  23. R. Zauner, C. Binet, D. F. Heaney, and J. Piemme, Powder Metall. 47, 1 (2004). https://doi.org/10.1179/pom.2004.47.1.1