DOI QR코드

DOI QR Code

Rapid Sintering of Nanostuctured Tungsten Carbide by High-Frequency Induction Heating and its Mechanical Properties

고주파유도 가열에 의한 나노구조의 텅스텐 카바이드 급속소결과 기계적 성질

  • Kang, Hyun-Su (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Doh, Jung-Mann (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Hong, Kyung-Tae (Advanced Functional Materials Research Center, Korea Institute of Science and Technology) ;
  • Ko, In-Yong (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering and Research Center for Advanced Materials Development, Engineering College, Chonbuk National University)
  • 강현수 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 도정만 (한국과학 기술 연구원 기능재료센타) ;
  • 홍경태 (한국과학 기술 연구원 기능재료센타) ;
  • 고인용 (전북대학교 신소재공학부 신소재 개발 연구센터) ;
  • 손인진 (전북대학교 신소재공학부 신소재 개발 연구센터)
  • Received : 2010.09.06
  • Published : 2010.11.25

Abstract

Extremely dense WC with a relative density of up to 99% was obtained within five minutes under a pressure of 80 MPa using the High-Frequency Induction Heated Sintering method. The average grain size of the WC was about 71 nm. The advantage of this process is not only rapid densification to obtain a neartheoretical density but also the prohibition of grain growth in nano-structured materials. The hardness and fracture toughness of the dense WC produced by HFIHS were $2660kg{\cdot}mm^{-2}$ and $7.2MPa{\cdot}m^{1/2}$, respectively.

Keywords

Acknowledgement

Supported by : 한국과학기술연구원

References

  1. H. C. Kim, I. J. Shon, I. K. Jeong, I. Y. Ko, J. K. Yoon, and J. M. Doh, Met. Mater. Int. 13, 39 (2007). https://doi.org/10.1007/BF03027821
  2. L. E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York (1971).
  3. H. Suzuki, Cemented Carbide and Sintered Hard Materials, Maruzen, Tokyo, pp.10-25 (1986).
  4. S. I. Cha and S. H. Hong, Mater. Sci. Eng. A 356, 381 (2003). https://doi.org/10.1016/S0921-5093(03)00151-5
  5. J. Zhao, T. Holland, C. Unuvar, and Z. A. Munir, Int. J. Refract. Metals Hard Mater. 1, 130 (2009).
  6. H. C. Kim, I. J. Shon, J. K. Yoon, S. K. Lee, and Z. A. Munir, Int. J. Refract. Metals Hard Mater. 24, 202 (2006). https://doi.org/10.1016/j.ijrmhm.2005.04.004
  7. A. Couret, G. Molenat, J. Galy, and M. Thomas, Intermetallics 16, 1134 (2008). https://doi.org/10.1016/j.intermet.2008.06.015
  8. S. Berger, R. Porat, and R. Rosen, Progress in Materials. 42, 311 (1997). https://doi.org/10.1016/S0079-6425(97)00021-2
  9. I. K. Jeong, J. M. Doh, I. Y. Ko, and I. J. Shon, J. Kor. Inst. Met. & Mater. 46, 223 (2008).
  10. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  11. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004). https://doi.org/10.1063/1.1774268
  12. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  13. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  14. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).
  15. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982). https://doi.org/10.1007/BF00724706
  16. H. C. Kim, I. J. Shon, J. E. Garay, and Z. A. Munir, Int. J. Refract. Metals Hard Matals Hard Mater. 22, 257 (2004). https://doi.org/10.1016/j.ijrmhm.2004.08.003