DOI QR코드

DOI QR Code

Study of the Distillation of Ferromanganese Alloy Melts at Reduced Pressure

훼로 망간 합금철 용탕의 감압 증류에 관한 연구

  • Hong, Seong-Hun (Division of Material Science and Engineering, Inha University) ;
  • Jeon, Byoung-Hyuk (Division of Material Science and Engineering, Inha University) ;
  • You, Byung-Don (Division of Material Science and Engineering, Inha University) ;
  • Kim, Jong-Deok (Division of Material Science and Engineering, Inha University) ;
  • Jang, Pill-Yong (Division of Material Science and Engineering, Inha University) ;
  • Kang, Soo-Chang (Steekmaking Research Group, POSCO Technical Research Laboratories) ;
  • Geum, Chang-Hun (Steekmaking Research Group, POSCO Technical Research Laboratories)
  • 홍성훈 (인하대학교 공과대학 신소재공학부) ;
  • 전병혁 (인하대학교 공과대학 신소재공학부) ;
  • 유병돈 (인하대학교 공과대학 신소재공학부) ;
  • 김종덕 (인하대학교 공과대학 신소재공학부) ;
  • 장필용 (인하대학교 공과대학 신소재공학부) ;
  • 강수창 (POSCO 기술연구소) ;
  • 금창훈 (POSCO 기술연구소)
  • Received : 2009.10.29
  • Published : 2010.02.20

Abstract

A fundamental study of the distillation behavior of ferromanganese alloy melts was carried out at 1773 K and 0.1333 kPa (=1 Torr). During the distillation of ferromanganese alloy melts under reduced pressure, manganese vaporizes preferentially to phosphorus and other solute elements. High purity manganese metal with a very low content of solute elements can be obtained by distillation of ferromanganese alloy melts. The evaporation of manganese is suppressed as the carbon content of ferromanganese alloy melt increases due to the decrease of activity and vapor pressure of the manganese. When the carbon content of ferromanganese alloy melt is high, melt droplets are ejected from the bath, especially in the early stages of the distillation, and the solute elements in the splashed droplets contaminate the condensed material. The ejection of melt droplets is presumed to be caused by the increase of melting temperature and viscosity of the surface layer of melt due to the enrichment of solute elements such as carbon and iron.

Keywords

References

  1. S. E. Olsen, M. Tangstad, and T. Lindstad, Production of Manganese Ferroalloys, p. 13-14, Tapir academic press, Trondheim (2007)
  2. D. S. Kozak and L. R. Matricardi, Iron and Steelmaker 8, 28 (1981)
  3. B. D. You, J. Kor. Inst. Met. & Mater. 33, 1508 (1995)
  4. B. D. You, K. Y. Park, J. J. Pak, and J. W. Han, Metals and Materials 5, 395 (1999)
  5. B. D. You, J. W. Han, and J. J. Pak, Steel Research 71, 22 B(2000) https://doi.org/10.1002/srin.200005685
  6. S. C. Shim, K. Morita, and N. Sano, J. Kor. Inst. Met. & Mater. 37, 244 (1999)
  7. W. Dresler, Proc. 72nd Steelmaking Conf., p. 13-20, The Iron and Steel Society, AIME, Chicago, USA (1989)
  8. The Japan Society for the Promotion of Science, The 19th Committee on Steelmaking, Steelmaking Data Source Book, Revised ed., p. 35, Gorden and Breach Science Publishers (1988)
  9. K. Yamada and E. Kato, Tetsu-to-Hagane 65, 264 (1979) https://doi.org/10.2355/tetsutohagane1955.65.2_264
  10. H. G. Hadrys, M. G. Frohberg, and J. F. Elliott, Metall. Trans. 1, 1867 (1970) https://doi.org/10.1007/BF02642785
  11. H. Schenck, M. G. Frohberg, and E. Steinmetz, Arch. Eisenh$\'{e}$ttenwes 34, 37 (1958)
  12. S. Banya, N. Maruyama, and N. Kawase, Tetsu-to-Hagane 70, 65 (1984) https://doi.org/10.2355/tetsutohagane1955.70.1_65
  13. F. O. N. Ahundov, F. Tsukihashi, and N. Sano, ISIJ Inst. 31, 685 (1991) https://doi.org/10.2355/isijinternational.31.685