DOI QR코드

DOI QR Code

316계 스테인리스강과 소듐 냉각재와의 양립성 연구

Compatibility Study between 316-series Stainless Steel and Sodium Coolant

  • 김준환 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 김종만 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 차재은 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 김성호 (한국원자력연구원 SFR 핵연료 피복관 개발) ;
  • 이찬복 (한국원자력연구원 SFR 핵연료 피복관 개발)
  • Kim, Jung Hwan (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Kim, Jong Man (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Cha, Jae Eun (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Kim, Sung Ho (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute) ;
  • Lee, Chan Bock (SFR Fuel Cladding Development, Korea Atomic Energy Research Institute)
  • 투고 : 2009.12.07
  • 발행 : 2010.05.22

초록

Studies were carried out to establish the technology for sodium-clad compatibility and to analyze the compatibility behavior of the Sodium-cooled Fast Reactor (SFR) cladding material under a flowing sodium environment. The natural circulation facility caused by the thermal convection of the liquid sodium was constructed and the 316-series stainless steels were exposed at $650{^{\circ}C}$ liquid sodium for 1458 hours. The weight change and related microstructural change were analyzed. The results showed that the quasi-dynamic facility represented by the natural convection exhibited similar results compared to the conventional dynamic facility. Selective leaching and local depletion of the chromium, re-distribution of the carbide, and the decarburization process took place in the 316-series stainless steel under a flowing sodium environment. This process decreased as the sodium flowed along the channel, which was caused by the change in the dissolved oxygen and carbon activity in the liquid sodium.

키워드

과제정보

연구 과제 주관 기관 : 교육과학기술부

참고문헌

  1. J. H. Kim, J. H. Baek, C. H. Han, S. H. Kim, C. B. Lee, K. S. Na, and S. J. Kim, J. Kor. Inst. Met. & Mater. 47, 621 (2009)
  2. W. F. Brehm, HEDL-SA-1559 (1978)
  3. J. H. Baek, S. H. Kim, C. B. Lee, and D. H. Hahn, Met. Mater. Int. 15, 4, 565 (2009) https://doi.org/10.1007/s12540-009-0565-y
  4. V. Ganesan and V. Ganesan, J. Nucl. Mater. 256, 69 (1998) https://doi.org/10.1016/S0022-3115(98)00041-5
  5. R. G. Taylor and R. Thompson, J. Nucl. Mater. 115, 25 (1983) https://doi.org/10.1016/0022-3115(83)90339-2
  6. R. S. Reid, J. J. Martin, and G. L. Schmidt, NASA/TM- 2005-213902 (2005)
  7. E. P. Loewen, Prog. in Nucl. Ener. 47, 561 (2005) https://doi.org/10.1016/j.pnucene.2005.05.075
  8. K. Hata, K. Hara, and M. Takahashi, Prog. in Nucl. Ener. 47, 596 (2005) https://doi.org/10.1016/j.pnucene.2005.05.062
  9. H. S. Khatak and J. B. Gnanamoorthy, Material Behavior and Physical Chemistry in Liquid Metal Systems, Plenum press, 229 (1981)
  10. A. W. Thorley, Material Behavior and Physical Chemistry in Liquid Metal Systems, p.19. Plenum press (1981)
  11. ASTM C997, Standard Methods for Chemical and Instrumental Analysis of Nuclear-Grade Sodium and Cover Gas, 622 (1983)
  12. D. L. Smith and R. H. Lee, ANL-7891 (1972)
  13. K. Natesan, Metall. Trans. 6A, 1143 (1975)
  14. C. Bagnall and D. Jacobs, WARD-NA-3045-23 (1975)
  15. G. D. Collins, GEAP-10394, 3-8, 9 (1971)
  16. G. M. Pharr, Mat. Sci and Eng. A253, 151 (1998)
  17. K. Natesan, L. Meimei, O. K. Chopra, and S. Majumdar, J. Nucl. Mater. 392, 243 (2009) https://doi.org/10.1016/j.jnucmat.2009.03.039
  18. R. Baboian, Corrosion Tests and Standards: Application and interpretation, ASTM Manual Series MNL 20, 387 (1995)
  19. K. Natesan, O. K. Chopra, and T. F. Kassner, Nucl. Tech. 28, 441 (1976)