DOI QR코드

DOI QR Code

Recovery of Nickel and Cobalt by a Hydrometallurgical Process from Nickel Laterite Ore with High Magnesium Content

마그네슘함량이 높은 니켈 laterite광으로부터 습식공정에 의한 니켈과 코발트 회수

  • Lee, Manseung (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Kim, Sangbae (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Youngyun (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chae, Jonggwee (Department of Advanced Materials Science & Engineering, Mokpo National University)
  • 이만승 (목포대학교 공과대학 신소재공학과) ;
  • 김상배 (한국지질자원연구원 광물자원연구본부) ;
  • 최영윤 (한국지질자원연구원 광물자원연구본부) ;
  • 채종귀 (목포대학교 공과대학 신소재공학과)
  • Received : 2009.09.07
  • Published : 2010.01.20

Abstract

Leaching and solvent extraction experiments have been performed to develop a hydrometallurgical process for the recovery of nickel and cobalt from nickel laterite ore with high magnesium content. Most of the nickel and magnesium in the laterite ore dissolved at leaching conditions of $80^{\circ}C$ and 100 g/L sulfuric acid concentration. while half of the cobalt and iron were leached at the same conditions. Solvent extraction experiments were carried out with D2EHPA and saponifed D2EHPA from a synthetic solution containing Ni, Co, and Mg. The extraction percentage of Co, Mg. and Ni by D2EHPA was very low in a pH range of 4.4 to 7.3. while the extraction percentage sharply increased by using saponified D2EHPA. The stripping percentage of the metals from the saponified D2EHPA increased with sulfuric acid concentration and reached 99.9% at 1 M $H_2SO_4$ solution.

Keywords

Acknowledgement

Grant : 해외 금속광물 개발을 위한 활용 기술 연구

Supported by : 한국지질자원연구원

References

  1. D. Georgiou and V. G. Papangelakis, Hydrometallurgy 49, 23 (1998) https://doi.org/10.1016/S0304-386X(98)00023-1
  2. A. R. Burkin, Critical reports on applied chemistry vol. 17 Extractive metallurgy of nickel. p.52-53, John Wiley & Son, NY (1987)
  3. G. K. Das, S. Acharya, and R. P. Das, Hydrometallurgy 39, 117 (1995) https://doi.org/10.1016/0304-386X(95)00025-C
  4. D. H. Rubisov and V. G. Papangelakis, Hydrometallurgy 58, 13 (2000) https://doi.org/10.1016/S0304-386X(00)00093-1
  5. D. H. Rubisov and V. G. Papangelakis, Hydrometallurgy 58, 89 (2000) https://doi.org/10.1016/S0304-386X(00)00092-X
  6. J. A. Johnson, B. C. Cashmore, and R. J. Hockridge, Minerals Eng. 18, 1297 (2005) https://doi.org/10.1016/j.mineng.2005.05.013
  7. B. I. Whittington, R. G. McDonald, J. A. Johnson, and D. M. Muir, Hydrometallurgy 70, 31 (2003) https://doi.org/10.1016/S0304-386X(03)00043-4
  8. B. I. Whittington, J. A. Johnson, L. P. Quan, R. G. McDonald, and D. M. Muir, Hydrometallurgy 70, 47 (2003) https://doi.org/10.1016/S0304-386X(03)00044-6
  9. R. G. McDonald and B. I. Whittington, Hydrometallurgy 91, 35 (2008) https://doi.org/10.1016/j.hydromet.2007.11.009
  10. R. G. McDonald and B. I. Whittington, Hydrometallurgy 91, 56 (2008) https://doi.org/10.1016/j.hydromet.2007.11.010
  11. K. H. Min, J. Kor. Inst. Met. & Mater. 24, 1235 (1986)
  12. K. H. Park, and C. W. Nam, Trends Met. & Mater. Eng. 21, 4 (2008)
  13. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, p.141 Pergamon Press. Oxford (1966)
  14. P. E. Tsakiridis and S. L. Agatzini, Minerals Eng. 17, 535 (2004) https://doi.org/10.1016/j.mineng.2003.12.003