Ecological Characteristics of Forest Community by Distance from Camellia japonica Stand

동백나무림으로부터 거리별 산림군집의 생태적 특성

  • Chung, Jae-Min (Korea National Arboretum) ;
  • Jung, Hye-Ran (Korea National Arboretum) ;
  • Kang, Jin-Taek (Korea Forest Seed & Variety Center) ;
  • Kim, Chang-Hwan (Dept. of For. Environ. Res., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.)) ;
  • Cho, Min-Gi (Dept. of For. Environ. Res., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.)) ;
  • Moon, Hyun-Shik (Dept. of For. Environ. Res., Gyeongsang National Univ.(Insti. of Agric. & Life Sci.))
  • 정재민 (국립수목원) ;
  • 정혜란 (국립수목원) ;
  • 강진택 (국립산림품종관리센터) ;
  • 김창환 (경상대학교 산림환경자원학(농업생명과학연구원)) ;
  • 조민기 (경상대학교 산림환경자원학(농업생명과학연구원)) ;
  • 문현식 (경상대학교 산림환경자원학(농업생명과학연구원))
  • Received : 2010.09.16
  • Accepted : 2010.12.22
  • Published : 2010.12.31

Abstract

This study was carried out to offer the basic information on ecological succession of evergreen broad-leaved forest through understanding of ecological characteristics of forest community by distance from Camellia japonica stand. Importance value of C. japonica at tree layer was highest in site I and those of Pinus densiflora and P. thunbergii were highest in site II, III and IV. At subtree layer, the importance value of C. japonica was highest in site I while Neolitsea sericea and Styrax japonica had the highest importance value in site II, III, and IV. In all sites, species diversity ranged from 0.121 to 0.515 and 1.112 to 1.589 at tree layer and subtree layer respectively. Evenness ranged from 0.811 to 0.930 at subtree layer, 0.796 to 0.913 at shrub layer and 0.155 to 0.727 at tree layer, this indicates that distribution pattern by species is more uniform at subtree and shrub layer than at tree layer. Soil pH was highest as 5.72 at site I. Contents of total N, organic matter and available P were higher at site I than other sites.

본 연구는 동백나무림으로부터 거리별 산림군집의 생태적 특성을 파악하여 난대상록활엽수림의 생태적 천이에 관한 기초정보를 제공하기 위하여 수행되었다. 층위별 중요치 분석 결과, 교목층은 조사구- I에서는 동백나무, 그 외 조사구에서는 해송과 소나무의 중요치가 가장 높았다. 아교목층에서 중요치가 가장 높은 수종은 조사구- I은 동백나무, 조사구- II, III은 참식나무, 조사구 IV는 때죽나무였다. 전조사지에서 종다양도는 교목층이 0.121-0.515로 낮고 관목층이 1.112-1.589로 높게 나타났으며, 균재도는 아교목층 0.811- 0.930, 관목층 0.796-0.913으로 교목층 0.155-0.727에 비해 높게 나타나 종별 개체수의 분포상태가 균일하다는 것을 알 수 있었다. 토양 pH는 조사구- I이 5.72로 가장 높았으며, 전질소, 유효인산, 치환성양이온 함량도 다른 조사구에 비해 조사구- I이 가장 높게 나타났다.

Keywords

References

  1. Barbour, M. J., J. H. Burk, and W. D. Pitts. 1987. Terrestrial plant ecology. 2nd ed., The Benjamin/ Cummings Publ. Co., p. 155-229.
  2. Brower, J. E. and J. H. Zar. 1977. Field and laboratory method for general ecology. Wm. C. Brown Company Publ. Iowa. 184pp.
  3. Cattadori, I. M., D. T. Haydon, and P. L. Hudson. 2005. Parasites and climate synchronize red grouse populations. Nature 433: 737-741. https://doi.org/10.1038/nature03276
  4. Chen, X. and B. L. Li. 2003. Changes in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. For. Ecol. Manage. 186: 197-206. https://doi.org/10.1016/S0378-1127(03)00258-5
  5. Chun, Y., E. Lee, and J. Lee. 2010. Estimation of possible growing area by analysis of the vegetation structure and habitat environment of Dendropanax morifera community. Korean J. Environ. Biol. 28: 30-39.
  6. Chung, J. M., S. H. Kim, S. S. Kim. 1998. Population structure, and emergence and growth dynamics of seedling, and spatial distribution of Dendropanax morbifera Lev. (Araliaceae). Korean. J. Plant Res. 11: 345-352
  7. Chung, J. M., H. R. Jung, J. T. Kang, and H. S. Moon. 2010. Vegetation structure and soil characteristics around Camellia japonica stand in Hakdong, Geoje Island. Jour. Agric. Life Sci., 44: 31-40.
  8. Curtis, J. T. and R. P. McIntosh. 1951. An upland forest continuum in the in the prairie forest bolder region Wisconsin. Ecology 32:476-496. https://doi.org/10.2307/1931725
  9. Jeong. J. H., K. S. Koo, C. H. Lee, and C. S. Kim. 2002. Physico-chemical properties of Korean forest soils by regions. Jour Korean For. Soc. 91: 694-700.
  10. Jin, Y. K. and I. T. Kim. 2005. Study of community classification Camellia japonica forest in the Korean penninsula. J. Life Sci. 15: 767-771. https://doi.org/10.5352/JLS.2005.15.5.767
  11. Jung, H. R., K. S. Jeon, J. K. Kim, and H. S. Moon. 2008. Species composition and community structure of Castanopsis cuspidata var. thunbergii communities. 27: 421-427. https://doi.org/10.5338/KJEA.2008.27.4.421
  12. Hwang, J., S. T. Lee, N. C. Park, J. C. Choi, H. C. Shin, K. J. Lee, and K. S. Lee. 2006. Changes in soil chemical propertiesw after thinning in Quercus acuta stand. Jour. Korean For. Soc. 95: 657-662.
  13. Kang, J. T., N,. C. Park, and Y. G. Chung. 2002. Effects of soil properties on growth of Castanopsis cuspidata var. sieboldii and Dendropanax morbifera stands in warm temperate forest zone. Jour Korean For. Sco. 91: 679-686.
  14. Kil, B. S. and J. U. Kim. 1999. Syntaxonomy of evergreen broad-leaved forests in Korea. Korean J. Environ. Ecol. 17: 233-247.
  15. Kim, J. H. 2003. The analysis of forest successional trend by species replacement model in the natural forest. J. Kor. For. En. 22: 1-10.
  16. Kim, I. T., J. H. Lee, and Y. G. Jin. 2000a. The vegetation of Hansan and Chubong islets. Korean J. Ecol. 23: 217-222.
  17. Kim, I. T., J. H. Lee, and Y. G. Jin. 2000a. The vegetation of Maemul, Somaemul and Eoyu islets. Korean. J. Ecol. 23: 391-395.
  18. Kim, S. H., S. C. Chin, C. J. Oh. 2002. The community structure of Quercus acuta forest at Wando warm-temperate forest arboretum. Jour. Korean For. Soc. 91: 781- 792
  19. Kong, W. S. 2005. Selection of vulnerable indicator plants by global warming. J. Kor. Meteorol. Soc. 41: 263-273.
  20. Krebs, C. J. 1985. Ecology. 3rd ed., Haber & Row, Publ., Inc. p. 3-14.
  21. Kwon, J. O. 2003. A study on the application of the ecological evaluation for the nature-friendly residential site development planning. Ph.D. Thesis. University of Seoul. 281pp.
  22. Lee, J. H., S. K. So, G. U. Suh, M. Y. Kim, and H. K. Song. 2010. Vegetation and soil properties of warm temperate evergreen broad-leaved forest in Hongdo, Korea. Kor. J. Env. Eco. 24: 54-61.
  23. Lee, S. H. and S. K. Kim. 1992. Natural distribution and characteristics of populations of Camellia japonica in Korea. J. Kor. Soc. Hort. Sci. 33: 196-208.
  24. Lesica, P. and P. M. Kittelson. 2010. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J. Arid. Environ. 30: 1-5.
  25. Ludwig, J. A. and J. F. Reynolds. 1988. Statistical ecology - a primer on methods and computing. John Wiley & Sons Publ., N.Y., 337pp.
  26. Morin, X., R. Jacques, S. Laurette, and C. Isabelle. 2010. Changes in leaf phenology of three european oak species in response to experimental climate change. New Phytologist 186: 900-910. https://doi.org/10.1111/j.1469-8137.2010.03252.x
  27. Sherry, R. A., X. H. Zhou, S. L. Gu, J. A. Arnone, D. S. Schimel, P. S. Verburg, L. L. Wallace, and Y. Q. Luo. 2007. Divergence or reproductive phenology under climate warming. Proceedings of the National Academy of Science, USA 104: 198-202. https://doi.org/10.1073/pnas.0605642104
  28. Shin, H. C., N., C. Park, H. K. Song, Y. G. Jeong, J. C. Choi, Y. H. Kwon, K. S. Lee, and Y. G. Kim. 2002. Analysis of vegetation structure and vegetation-environment relationships in the Machilus thunbergii stands. Korea. Jour. Korean. For. Soc. 91: 765-774.
  29. Starr, J. L., T. B. Parkin, and J. J. Meisinger. 1995. Influence of sample size in chemical and physical soil measurements. Soil Sci. Soc. Amer. J. 59: 713-719. https://doi.org/10.2136/sssaj1995.03615995005900030012x
  30. Whittaker, R. H. 1965. Dominance and diversity in land plant communities. Science 147: 250-259. https://doi.org/10.1126/science.147.3655.250
  31. Wildi, B. and C. Lutz. 1996. Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ. 19: 138-146. https://doi.org/10.1111/j.1365-3040.1996.tb00235.x