Effect of IAA and Kinetin on Induction of Protonemal Gemmae and Gametophytes of Hypnum plumaeforme Wilson

털깃털이끼(Hypnum plumaeforme Wilson) 원사체 무성아와 배우체의 형성에 미치는 IAA와 Kinetin의 영향

  • Ahmed, Md. Giush Uddin (Department of Horticultural Sciences, Chungbuk National University) ;
  • Lee, Cheol Hee (Department of Horticultural Sciences, Chungbuk National University)
  • Received : 2010.01.18
  • Accepted : 2010.02.18
  • Published : 2010.03.31

Abstract

This study was conducted to examine the effects of IAA and kinetin on induction of gemmae and gametophytes in Hypnum plumaeforme moss during tissue culture. Explants were obtained from sterilized gametophyte tips cultured on solid basal medium containing Knop's major salts and Nitsch and Nitsch's trace elements. After culture, inoculated gametophyte tip produced protonema firstly, changed to new gametophytes after four weeks. Aseptic gametophytes were chopped and inoculated on the same media containing 0.01, 0.1, 1 and $10{\mu}M$ of IAA and kinetin. As a result, secondary protonemata as well as protonemal gemmae were formed from gametophytes. But protonemal gemmae formation was varied according to the concentration of IAA and kinetin. Lower concentration of IAA and kinetin promoted gemma formation and bud induction. Especially, $0.01{\mu}M$ of kinetin showed the highest frequency of bud and gemma production. All the materials, obtained from $0.01{\mu}M$ kinetin medium, were subcultured to media supplemented with 0.01, 0.1, 1 and $10{\mu}M$ of IAA and kinetin again to induce gametophytes. After subculture, protonema and calli were developed from secondary protonema, and induced gametophytes finally. IAA regulated induction and growth of gametophytes, and kinetin influenced gemma formation and gametophyte induction also. All aspects of development of this moss species were governed by the external growth regulators.

본 연구는 털깃털이끼(Hypnum plumaeforme Wilson)의 조직배양시 무성아와 배우체 유기에 미치는 IAA와 kinetin의 영향을 조사하기 위하여 실시하였다. 배양재료는 멸균한 배우체의 정단을 Knop 배지(1865)의 다량요소와 Nitsch와 Nitsch배지 (1956)의 미량요소를 첨가한 고체배지에 배양하여 획득하였다. 배양 초기에는 배양한 배우체의 정단으로부터 원사체가 형성되었으며, 배양 4주에는 새로운 배우체로 전환되었다. 무균의 배우체를 다져서 IAA와 kinetin을 각 0.01, 0.1, 1, $10{\mu}M$의 농도로 단용첨가한 동일배지에 배양한 결과 배우체로부터 원사체 무성아는 물론 이차 원사체도 형성되었다. 그러나 IAA와 kinetin의 농도에 따라 원사체 형성 및 눈 유기가 달라지는 경향을 보였는데, 낮은농도의 IAA와 kinetin을 첨가하는 경우 무성아 형성과 눈의 유기가 촉진되는 경향을 보였다. 특히 kinetin $0.01{\mu}M$을 첨가한 배지에서 눈과 원사체 형성율이 가장 높았다. 배우체의 형성을 위하여kinetin $0.01{\mu}M$을 첨가한 배지에서 형성된 모든 배양재료를 다시 IAA와 kinetin이 0.01, 0.1, 1, $10{\mu}M$씩 단용첨가된 배지에 계대배양하였다. 계대배양한 후 이차 원사체로부터 원사체와 캘러스가 형성되는 과정을 거쳐, 마침내 배우체가 유기되었다. IAA는 배우체 유기와 생장을 조절하였고, kinetin은 무성아 형성과 배우체 유기에 영향을 미쳤다. 본 연구의 결과 조직배양시 첨가한 생장조절물질은 털깃털이끼의 발달과정 전반에 중대한 영향을 미치는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국산업기술평가원

References

  1. Beutelmann, P. and L. Bauer. 1977. Purification and identification of a cytokinin from moss callus cells. Planta 133: 215-217. https://doi.org/10.1007/BF00380679
  2. Bhatla, S.C. and S. Dhingra-Babbar. 1990. Growth regulating substances in mosses. In: Chopra, R.N. and S.C. Bhatla. (eds.). Bryophyte Development: Physiology and Biochemistry, CRC Press, Ann. Arbor. p. 79-101.
  3. Bidwell, R.G.S. 1979. Plant Physiology (second edition). Macmillan Publishing Company, Inc., New York. p. 726.
  4. Bierfreund, N.M., R. Reski, and E.L. Decker. 2003. Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens. Plant Cell Rep. 21:1143-1152. https://doi.org/10.1007/s00299-003-0646-1
  5. Bopp, M. 1963. Development of the protonema and bud formation in mosses. J. Linn. Soc. London Bot. 58:305-309. https://doi.org/10.1111/j.1095-8339.1990.tb00899.x
  6. Chopra, R.N. and A. Gupta. 1992. Effect of some cytokinins on growth and archegonial formation in the liverwort Riccia discolor Lehm. et Lindenb. grown in vitro. J. Hattori Bot. Lab. 71:47-54.
  7. Cooke, T.J., D. Poli, A.E. Sztein, and J.D. Cohen. 2002. Evolutionary patterns in auxin action. Plant Molec. Biol. 49:319-338. https://doi.org/10.1023/A:1015242627321
  8. Cove, D.J., N.W. Ashton, D.R. Featherstone, and T.L. Wang. 1979. The use of mutant strains in the study of hormone action and metabolism in the moss Physcomitrella patens. Proc. of the Fourth John Innes Symp. p. 231- 241.
  9. Cove, D.J., A. Schild, N.W. Ashton, and E. Hartmann. 1978. Genetic and physiological studies of the effect of light on the development of the moss, Physcomitrella patens. Photochem. Photobiol. 27:249-254. https://doi.org/10.1111/j.1751-1097.1978.tb07596.x
  10. Forman, R.T.T. 1964. Growth under controlled conditions to explain the hierarchical distributions of a moss, Tetraphis pellucida. Ecol. Monogr. 34:1-25. https://doi.org/10.2307/1948461
  11. Goodwin, T.W. and E.I. Mercer. 1983. Introduction to plant biochemistry. 2nd ed. Pergamon Press, Oxford. p. 677.
  12. Gorton, B.S. and R.E. Eakin. 1957. Development of the gametophyte in the moss Tortella caespitosa. Bot. Gaz. 119:31-38. https://doi.org/10.1086/335957
  13. Hahn, H. and M. Bopp. 1968. A cytokinin test with high specifity. Planta 83:115-118. https://doi.org/10.1007/BF00385140
  14. Klein, B. 1967. Versuche zur Analyse der Protonemaentwicklung der Laubmoose. IV. Der Endogene Faktor H und seine Rolle bei der Morphogenese von Funaria hygrometrica. Planta 73:12-27. https://doi.org/10.1007/BF00419837
  15. Knop, W. 1865. Quantitative utersuchungen Uber den ernahrungensproze$\beta$ der pflanze [German]. Landw. Versuchssat. 7:93.
  16. Magill, R.E. 1990. Glossarium Polyglottum Bryologiae. Missouri Botanical Garden, St. Louis, p. 297.
  17. Maravolo, N.C. 1980. Control of development in hepatics. Bull. Torrey Bot. Club 107:308-324. https://doi.org/10.2307/2484154
  18. Nitsch J.P. and C. Nitsch. 1956. Auxin-dependent growth of excised Helianthus tissues. Am. J. Bot. 43:839-851. https://doi.org/10.2307/2439000
  19. Olarinmoye, S.O. 1981. Regeneration and gemma development in Hyophila crenulata C. Muell. ex Dus. Cryptog. Bryol. Lichenol. 2:457-460.
  20. Stange, L. 1983. Cell cycle, cell expansion and polarity during morphogenesis of appendicular structures in Riella helicophylla. Zeit. Pflanzenphysiol. 112:325-335. https://doi.org/10.1016/S0044-328X(83)80050-6
  21. Stange, L. and J.D. Osborne. 1988. Cell specificity in auxinand ethylene-induced 'supergrowth' in Riella helicophylla. Planta 175:341-347. https://doi.org/10.1007/BF00396339
  22. Szweykowska, A. 1963. Kinetin-induced formation of gametophores in dark cultures of Ceratodon purpureus. J. Exp. Bot. 4:137-141.