References
- M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631-2654 (1992). https://doi.org/10.1109/3.161322
-
L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled
$LiNbO_3$ ,” J. Opt. Soc. Am. B 12, 2102-2116 (1995). https://doi.org/10.1364/JOSAB.12.002102 -
W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator based on periodically poled
$LiNbO_3$ ,” Opt. Lett. 21, 713-715 (1996). https://doi.org/10.1364/OL.21.000713 - K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, O. Prakash, and M. Cha, “Poling quality evaluation of periodically poled lithium niobate using diffraction method,” J. Opt. Soc. Korea 12, 205-209 (2008). https://doi.org/10.3807/JOSK.2008.12.3.205
-
H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO :
$LiNbO_3$ device with a 5 mm X 5 mm aperture,” Opt. Lett. 30, 2918-2920 (2005). https://doi.org/10.1364/OL.30.002918 -
T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric
$LiTaO_3$ ,” Opt. Lett. 25, 651-653 (2000). https://doi.org/10.1364/OL.25.000651 - M. J. Missey, V. Dominic, L. E. Myers, and R. C. Eckardt, “Diffusion-bonded stacks of periodically poled lithium niobate,” Opt. Lett. 23, 664-666 (1998). https://doi.org/10.1364/OL.23.000664
- J. Haisma, B. A. C. M. Spierings, U. K. P. Biermann, and A. A. van Gorkum, “Diversity and feasibility of direct bonding a survey of a dedicated optical technology,” Appl. Opt. 33, 1154-1169 (1994). https://doi.org/10.1364/AO.33.001154
- K. Eda, M. Sugimoto, and Y. Tomita, “Direct heterobonding of lithium niobate onto lithium tantalate,” Appl. Phys. Lett. 66, 827-828 (1995). https://doi.org/10.1063/1.113435
-
C. B. E. Gawith, D. P. Shepherd, J. A. Abernethy, D. C. Hanna, G. W. Ross, and P. G. R. Smith, “Second-harmonic generation in a direct-bonded periodically poled
$LiNbO_3$ buried waveguide,” Opt. Lett. 24, 481-483 (1999). https://doi.org/10.1364/OL.24.000481 - G. D. Miller, “Periodically poled lithium niobate: modeling fabrication, and nonlinear-optical performances,” Ph.D. Dissertation, Stanford University (1998).
- A. P. Malvino, Electronic Principles, 5th ed. (McGraw-Hill, New York, USA, 1993).
- A. Plobl and G. Kräuter, “Wafer direct bonding: tailoring adhesion between brittle materials,” Mater. Sci. Eng. R25, 1-88 (1999).
- D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553-1555 (1997). https://doi.org/10.1364/OL.22.001553
Cited by
- Room temperature direct bonding of LiNbO3crystal layers and its application to high-voltage optical sensing vol.21, pp.8, 2011, https://doi.org/10.1088/0960-1317/21/8/085025
- Angle-tuned second-harmonic generation in periodically-poled lithium niobate vol.107, pp.2, 2012, https://doi.org/10.1007/s00340-012-4932-x
- Micro- and nano-domain engineering in lithium niobate vol.2, pp.4, 2015, https://doi.org/10.1063/1.4928591
- Efficiency improvement in MgO:PPLN based optical parametric generation using soft-edge top-hat transverse intensity profile for the pump beam vol.316, 2014, https://doi.org/10.1016/j.optcom.2013.11.037
- Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers vol.106, pp.5, 2015, https://doi.org/10.1063/1.4907679