Radiological Flattening of Lumbar Lordosis and Related Factors in Some Korean Farmers

일부 한국 농업인의 방사선학적 요추 편평화와 관련 요인

  • Song, Han-Soo (Department of Occupational & Environmental Medicine, School of Medicine Chosun University) ;
  • Yoo, Sang-Kon (Department of Occupational & Environmental Medicine, School of Medicine Chosun University) ;
  • Choi, Chang-Ki (Department of Occupational & Environmental Medicine, School of Medicine Chosun University) ;
  • Lee, Chul-Gab (Department of Occupational & Environmental Medicine, School of Medicine Chosun University) ;
  • Lee, Kyung-Suk (Rural Development Administration)
  • 송한수 (조선대학교 의과대학 산업의학과) ;
  • 유상곤 (조선대학교 의과대학 산업의학과) ;
  • 최창기 (조선대학교 의과대학 산업의학과) ;
  • 이철갑 (조선대학교 의과대학 산업의학과) ;
  • 이경숙 (농촌진흥청)
  • Received : 2010.04.29
  • Accepted : 2010.09.06
  • Published : 2010.12.31

Abstract

Objectives: To determine if agricultural work is related to radiological flattening of lumbar lordosis, and to identify the relationship between of back pain and flat back in selected Korean farmers. Methods: Between June 2006 and July 2008, 414 farmers, 155 (37.4%) males and 259 (62.6%) females participated in this study. We collected data on hazardous agricultural work postures and other factors from interviews, surveys, and x-ray views of lateral lumbar. The operational definition of a flat back was below -1 SD of lordotic angle, with a normal distribution between L1 and S1 level. Logistic regression analysis was conducted to evaluate the relationship between flat back and hazardous working posture ratio, sex, the severity of back pain. Results: Mean lordotic angle was 42.9${\pm}$15.7$^{\circ}$. Flat back had a higher prevalence in the females (24.7%) than the males (5.8%). The odds ratio of flat back risk is 3.30 (95% CI: 1.46~7.46) in the females compared to the males, 1.31 (95% CI: 0.61~2.79), 4.11 (95% CI: 1.77~9.55) in the group of hazardous working posture ratio compared to the low risk group, 2.78 (95% CI: 1.27~6.07), 5.74 (95% CI: 2.27~14.49) in the group of L4-L5 disc space narrowing compared to normal group, 3.06 (95% CI: 1.27~7.31), 5.45 (95% CI: 1.70~17.46) in the group of lumbar spine compression fracture compared to no fracture. Odds ratio of severe back pain is 2.29 (95% CI: 1.12~4.72) in the group of flat back compared to normal group. Conclusions: Hazardous agricultural working postures, such as 'low- lifting, pulling, pushing work and high- squatting posture work' are associated with flat back. Low back pain is significantly associated with flat back group in female farmers.

목적: 일부 한국 농업인에서 요추 전만각의 편평화와 관련된 요인을 파악하고, 요추 편평화가 요통과 관련이 있는지 확인하기 위함이다. 방법: 2006년 5월부터 2008년 6월 사이에 전라남도 지역의 농민 414명 (남자 155, 37.4%, 여자 259, 62.6%)을 대상으로 요추 방사선 촬영과 설문조사를 시행하였다. 요추 측면사진에서 요추1번과 천추 1번이 이루는 요추 전만각을 측정하여, 표준정규분포의 -1 표준편차 이하에 해당되는 경우를 '편평요추(flat back)'로 정의하였다. 편평요추 유무를 종속변수로 하고, 성 및 연령, 요추 추간판 간격의 협소화 및 압박골절의 정도, 쪼그려 앉는 작업과 같은 위험한 농작업에 노출정도 등을 독립변수로 한 로지스틱 회귀분석을 하였다. 요통의 심한 정도와 위험한 농작업에 노출정도와 관련성을 확인하기 위해 다항로지스틱 회귀분석을 하였다. 결과: 연구대상자의 요추 전만각 평균은 42.9${\pm}$15.7$^{\circ}$로, 여자에서 39.9${\pm}$16.6$^{\circ}$로 남자의 48.1${\pm}$12.6$^{\circ}$보다 유의하게 작았다(p<0.01). 편평요추가 발생할 교차비는 여성에서 3.30 (95% CI: 1.46~7.46), 추간판 간격의 감소가 심할수록 2.78 (95% CI: 1.27~6.07), 5.74 (95% CI: 2.27~14.49), 압박골절이 심할수록 3.06 (95% CI: 1.27~7.31), 5.45 (95% CI: 1.70~17.46), 쪼그려 앉는 작업자세 등 위험한 농작업 자세의 비중이 클수록 1.31 (95% CI: 0.61~2.79), 4.11 (95% CI: 1.77~9.55), 5.99 (95% CI: 2.44~14.71) 유의하게 높았다. 성과 연령을 보정하였을 때 편평요추가 있는 경우 심한 요통이 발생할 교차비는 2.29 (95% CI: 1.12~4.72)이었다. 결론: 편평요추는 쪼그려 앉거나 허리를 숙이는 농작업 자세와 관련이 있고, 이러한 작업에 주로 많이 종사하는 여자 농업인에서 발생할 위험성이 높다. 요추 전만각이 감소된 경우 심한 요통이 발생할 가능성이 많다.

Keywords

References

  1. Rural Development Administration. The Health of Agricultural Workers and the Type of Management (translated by Song HS). Suwon. 2008. pp 89-96. (Korean)
  2. Rural Development Administration. Standardization of Diagnostic Methods for Musculoskeletal Disease of Agricultural Workers and Work-related Evaluation (translated by Song HS). Suwon. 2009. pp 130. (Korean)
  3. Lee CS, Kim YT, Kim EG. Clinical study of lumbar degenerative kyphosis. J Korean Orthop Assoc 1997;4(1):27-35. (Korean)
  4. Murata Y, Takahashi K, Yamagata M, Hanaoka E, Moriya H. The knee-spine syndrome: Association between lumbar lordosis and extension of knee. J Bone Joint Surg Br 2003;85(1):95-9. https://doi.org/10.1302/0301-620X.85B1.13389
  5. Kim KT. Lumbar kyphosis. J Korean Soc Spine Surg 1999;6(2):306-15. (Korean)
  6. Lim IS, Oh CS, Shin JH, Kim BY, Yoon JR. Radiological analysis of aging changes of the lumbar intervertebral disc. Korean J Phys Anthrop 1995;1:53-60. (Korean)
  7. Cobb JR. Outline for the study of scoliosis. instructional course lectures. Am Acad Orthoped Surg 1948;5:261-75.
  8. Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A. Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: Part 1. Lumbar spine. Eur Spine J 2006;15:720-30. https://doi.org/10.1007/s00586-005-1029-9
  9. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis: the study of osteoporotic fractures research group. J Bone Miner Res 1996;11(7):984-96.
  10. Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK. Recognizing and reporting osteoporotic vertebral fracture. Eur Spine J 2003;12(2):104-12.
  11. Moon MS, Lee KS, Lim CI, Kim YB, Lee HS. A clinical study of degenerative lumbar scoliosis. J Korean Orthop Assoc 1992;27(4):946-55. (Korean)
  12. Kim YT, Lee CS, Kim JH, Kim JM, Park JH. Clinical features of degenerative scoliosis. J Korean Soc Spine Surg 2001;8(1):15-20. (Korean) https://doi.org/10.4184/jkss.2001.8.1.15
  13. Murata Y, Takahashi K, Hanaoka E, Utsumi T, Yamagata M, Moriya H. Changes in scoliotic curvature and lordotic angle during the early phase of degenerative lumbar scoliosis. Spine 2002;27(20):2268-73. https://doi.org/10.1097/00007632-200210150-00016
  14. The Korean Orthopedic Association. Textbook of Orthopedics. 6th ed. Newest Medicine Company. Seoul. 2006. pp 428-9. (Korean)
  15. Suk SL, Lee CS, Lo M, Kim WJ. Normal segmental sagittal angle of the lower dorsal and lumbosacral spine in Korean adult. J Korean Orthop Assoc 1989;24(1):237-44. (Korean)
  16. Oh CS, Kim TS, Son MH, Kim BY. A study on the changes in the lumbar lordosis, lumbosacral and sacral inclination angle during aging. Korean J Phys Anthrop 1995;8:1-7. (Korean)
  17. Marras WS. Jorgensen MJ, Granata KP, Wiand B. Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI. Clin Biomech 2001;16(1):38-46. https://doi.org/10.1016/S0268-0033(00)00046-2
  18. Shim CS, Lee SH, Lim SR, Jung BJ, Choi WC, Chung SK. Anterior lumbar interbody fusion for focal type of degenerative flat back : Preliminary report. J Korean Neurosurg Soc 2003;33(3):460-5. (Korean)
  19. Kang CH, Shin MJ, Kim SM, Lee SH, Lee CS. MRI of paraspinal muscles in lumbar degenerative kyphosis patients and control patients with chronic low back pain. Clin Radiol 2007;62:479-86. https://doi.org/10.1016/j.crad.2006.12.002
  20. Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology 2007;245(1):43-61. https://doi.org/10.1148/radiol.2451051706
  21. MacDonald DA, Moseley GL, Hodges PW. The lumbar multifidus: Does the evidence support clinical beliefs? Man Ther 2006;11(4):254-63. https://doi.org/10.1016/j.math.2006.02.004
  22. Hodges P, Holm AK, Hansson T, Holm S. Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine 2006;31(25):2926-33. https://doi.org/10.1097/01.brs.0000248453.51165.0b
  23. Center for Occupational and Environmental Health, University of California, Berkeley, USA. Conference proceedings: Stooped and squatting postures in the workplace. Available: http://ag-ergo.ucdavis.edu [cited August 2006]
  24. Masuda T, Miyamoto K, Oguri K, Matsuoka T, Shimizu K. Relationship between the thickness and hemodynamics of the erector spin muscles in various lumbar curvatures. Clin Biomech 2005;20(3):247-53. https://doi.org/10.1016/j.clinbiomech.2004.10.008
  25. Colloca CJ, Hinrichs RN. The biomechanical and clinical significance of the lumbar erector spinae flexionrelaxation phenomenon: A review of literature. J Manipulative Physiol Ther 2005;28(8):623-31. https://doi.org/10.1016/j.jmpt.2005.08.005
  26. Andersson EA, Oddsson LI, Grundstrom H, Nilsson J, Thorstensson A. EMG activities of the quadratus lumborum and erector spinae muscles during flexion-relaxation and other motor tasks. Clin Biomech 1996;11(7):392-400. https://doi.org/10.1016/0268-0033(96)00033-2
  27. Lee SW, Chan CK, Lam TS, Lam C, Lau NC, Lau RW, Chan ST. Relationship between low back pain and lumbar multifidus size at different postures. Spine 2006;31(19):2258-62. https://doi.org/10.1097/01.brs.0000232807.76033.33
  28. Shin G, Mirka GA. An in vivo assessment of the low back response to prolonged flexion: Interplay between active and passive tissues. Clin Biomech 2007;22(9):965-71. https://doi.org/10.1016/j.clinbiomech.2007.06.003
  29. Michael A, Nikolai B, Kim B, Patricia D. The Biomechanics of Back Pain. 2nd edition. Elsevier Science Health Science Div. Philadelphia. 2006. pp 7-8.
  30. Lehman GJ, Story S, Mabee R. Influence of static lumbar flexion on the trunk muscles' response to sudden arm movements. Chiropr Osteopat 2005;13:23. https://doi.org/10.1186/1746-1340-13-23
  31. Solomonow M, Baratta RV, Banks A, Freudenberger C, Zhou BH. Flexion-relaxation response to static lumbar flexion in males and females. Clin Biomech 2003;18(4):273-9. https://doi.org/10.1016/S0268-0033(03)00024-X
  32. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24(8):755-62. https://doi.org/10.1097/00007632-199904150-00005
  33. National Institute for Occupational Safety and Health Publications. Musculoskeletal disorders and work-place factors. Available: http://www.cdc.gov/niosh/ docs/97-141 [cited July 1997].
  34. Kim YH, Kim KS. Computational modeling of spine and trunk muscles subjected to follower force. Journal of Mechanical Science and Technology 2007;21(4):568-74. https://doi.org/10.1007/BF03026960
  35. Kim K, Kim YH. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture. J Biomech Eng 2008;130(4):041005. https://doi.org/10.1115/1.2907739
  36. Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 1999;24(10):1003-9. https://doi.org/10.1097/00007632-199905150-00014
  37. Moseley GL, Hodges PW, Gandevia SC. Deep and superficial fibers of the lumbar multifidus muscle are differentially active during voluntary arm movements. Spine 2002;27(2):E29-36. https://doi.org/10.1097/00007632-200201150-00013
  38. Hides J, Gilmore C, Stanton W, Bohlscheid E. Multifidus size and symmetry among chronic low back pain and healthy asymptomatic subjects. Man Ther 2007;13(1):43-9.
  39. Jang JS, Lee SH, Min JH, Han KM. Lumbar degenerative kyphosis: radiologic analysis and classifications. Spine 2007;32(24):2694-9. https://doi.org/10.1097/BRS.0b013e31815a590b
  40. Kim KT, Lee SH, Suk KS, Lee JH, Im YS, Seo EM. Loss of sagittal balance and clinical outcomes following corrective osteotomy for lumbar degenerative kyphosis. J Korean Orthop Assoc 2009;44(1):83-92. (Korean) https://doi.org/10.4055/jkoa.2009.44.1.83